Quantum electrodynamics of superconductor-insulator transitions in Josephson junction chains

Seminário Virtual | Wednesday, May 12, 2021 | 13:00:00
Vladimir Manucharyan

It is customary to associate a superconducting phase with zero resistance and an insulating phase with infinite resistance. However, near a quantum phase transition, the experimentally measured resistance does not attain either value, and hence the physics becomes hidden in the scaling of resistance with temperature, system size, magnetic field, etc. Instead, we consider a finite frequency spectroscopy of the collective phase-mode of the Cooper pair condensate, excited with less than a single quantum, on average. This approach is particularly well suited for 1D chains of Josephson junctions, where the phase-mode corresponds to a guided electromagnetic wave, and spectroscopy can be done using superconducting qubit techniques. The insulating phase manifests itself in the damping of the phase-mode by the quantum phase-slip fluctuations (instantons). This damping is a many-body effect, related to relaxation of plasmons in non-linear Luttinger liquids, or decay of instantons in quantum field theory. The dependence of the damping rate on frequency (at a nearly zero temperature) suggests a novel tool to characterize quantum phase transitions.


Registration: https://forms.gle/QJsx55ZzWFbTh51B9 

Please find below the Zoom link of the event:


Youtube link: https://youtu.be/h6wNhDd6FZo