Holography for Black Hole Microstates

Stefano Giusto

University of Padua

Theoretical Frontiers in Black Holes and Cosmology, IIP, Natal, June 2015

1/24

```
Based on:
1110.2781, 1306.1745, 1311.5536, 1405.6185, 1503.01463 and to
appear
```

In collaboration with:

I. Bena, L. Martucci, E. Moscato, M. Petrini, R. Russo, M. Shigemori, N. Warner

Outline

A quick overview of black hole paradoxes:

- the entropy problem
- the Strominger-Vafa "solution"
- Holography for BPS black hole microstates:
 - review of the D1-D5 CFT
 - gravity-CFT map for D1-D5 geometries
 - a class of D1-D5-P microstates
- Supergravity construction of D1-D5-P microstates:
 - superstrata
- Geometry from CFT:
 - 1-point functions
 - entanglement entropy

The information paradox

- Hawking: classical horizons coupled to quantum matter emit particle pairs in an entangled state
- When the black hole has completely evaporated the outside radiation is entangled with nothing
 ⇒ one cannot associate to it a definite quantum state
- Mathur, AMPS: to restore unitarity one has to either
 - assume remnants
 - modify the classical horizon (fuzzballs, firewalls) ←
 - introduce non-localities (ER=EPR, Papadodimas-Raju)

The entropy problem

• One aspect of the information paradox survives in the susy limit:

- the final radiation is described by a mixed state \Rightarrow entropy
- this is the Bekenstein-Hawking entropy

$$S_{BH} = \frac{A_H}{4 G}$$

- S_{BH} can be non-vanishing also for BPS black holes
- The usual statistical interpretation of entropy should imply $S_{BH} \stackrel{?}{=} \log(\#\text{microstates})$
- "No-hair" theorem: for fixed mass and charges there is a unique classical geometry with a regular horizon ⇒

(classical microstates) = 1

Strominger-Vafa counting

- In string theory the black hole is described by a bound state of N D-branes (N ≫ 1)
- Example:

```
D1-D5-P on \mathbb{R}^{4,1} 	imes S^1 	imes T^4
```

- At small gravitational coupling $(g_s \rightarrow 0)$ the bound state of D-branes is described by a CFT
- Microstates of the CFT can be counted

 $\log(\#\text{microstates}) = 2\pi \sqrt{n_1 n_5 n_p} = S_{BH}$

What happens to the microstates at finite gravitational coupling $(g_s N \sim 1)$?

Microstate geometries

- For finite g_sN, D-branes backreact on spacetime
- For particular microstates (coherent states), the backreaction is well described by supergravity

D-brane microstate

microstate geometry

The D1-D5 CFT

 At a special point in moduli space, the low energy limit of the D1-D5 system is described by the

 $(T^4)^N/S_N$ orbifold with (4,4) susy

where $N = n_1 n_5$

• The orbifold Hilbert space includes twist sectors: $\phi_i(y + 2\pi R) = \phi_{i+1}(y), \quad i = 1, \dots, w - 1$

 $\sum_i N_i w_i = N$

 $N_i \#$ strands of winding w_i

D1-D5 CFT

Ramond ground states \Leftrightarrow D1-D5 states

- The CFT contains fermions $\psi^{\dot{\alpha}\dot{A}}$, $\tilde{\psi}^{\dot{\alpha}\dot{A}}$ (α , $\dot{\alpha}$, $\dot{A} = 1, 2$)
- Fermions transform under R-symmetry $SU(2)_{\alpha} \times SU(2)_{\dot{\alpha}} \sim SO(4)$ $\Rightarrow \mathbb{R}^4$ rotations
- Black hole states are in the RR sector \Rightarrow fermion zero-modes
- We restrict to ground states which are bosonic and T^4 -invariant \Rightarrow 5 "spin" states: $s = (0,0), (\pm 1/2, \pm 1/2)$

D1-D5 geometries (Lunin, Mathur; Kanitscheider, Skenderis, Taylor)

- D1-D5 geometries are specified by a profile: $g^{A}(v)$, A = 1, ..., 5
- The components of g^A map to the different spin states:

• The harmonic modes of g^A map to the winding numbers:

$$g^{1} + i g^{2} = \sum_{w \ge 1} \frac{1}{w} \left(a_{w}^{(+,+)} e^{\frac{2\pi i w}{L} v} + a_{w}^{(-,-)} e^{-\frac{2\pi i w}{L} v} \right), \dots$$

Gravity-CFT map:

$$\{a_{w_i}^{(s_i)}\} \qquad \Leftrightarrow \qquad \sum_{\{N_i\}} \prod_i (a_{w_i}^{(s_i)})^{N_i} (|s_i\rangle_{w_i})^{N_i}$$

where the sum $\sum_{\{N_i\}}'$ is restricted to $\sum_i N_i w_i = N$

Coherent states and supergravity

• The sum $\sum_{\{N_i\}}' \prod_i (a_{w_i}^{(s_i)})^{N_i} (|s_i\rangle_{w_i})^{N_i}$ is peaked on

 $w_i \, \overline{N}_i \propto |a_{w_i}^{(s_i)}|^2 \quad \text{for} \quad \overline{N}_i \gg 1$

- \overline{N}_i is the average value of strands of winding w_i with "spin" s_i
- When $\overline{N}_i \gg 1 \, \forall i$ the state is well described by supergravity
- The sum over N_i has a non-trivial spread (unless all strands are equal, i.e. N_i = 0 for i > 1)
- Thus generic microstates are not eigenstates of R-charge and the dual geometries are not rotationally invariant

Examples I

• The simplest D1-D5 state is

- Spectral flow maps this state to the SL(2,C) invariant vacuum
- On the gravity side spectral flow is a change of coordinates mixing AdS₃ (t, y) and S³ (φ, ψ)

$$\phi \to \phi + \frac{t}{R} \quad , \quad \psi \to \psi + \frac{y}{R}$$

This change of coordinates maps the geometry to

 $AdS_3 \times \textit{S}^3 \times \textit{T}^4$

(日) (四) (三) (三)

Examples II

• The dual geometry is a deformation of $AdS_3 \times S^3 \times T^4$

The deformation is controlled by one scalar warp factor

$$Z_4 = \frac{b}{R} \left(\frac{a}{\sqrt{r^2 + a^2}}\right)^k \frac{\sin^k \theta}{r^2 + a^2 \cos^2 \theta} \cos k\phi$$

Adding momentum

- The D1-D5 black hole has vanishing horizon area in classical supergravity
- The simplest BPS black hole with S_{BH} > 0 classically is the D1-D5-P hole
- The simplest way to add momentum is to act on a D1-D5 state by the CFT chiral algebra: L_{-n}, J^α_{-n}. Example: act with e^{χ J⁺₋₁} (χ = π/2)

Note:

$$J_{-1}^{+}|+,+\rangle_{1}=0$$

 $(J_{-1}^+)^m |0,0\rangle_k = 0$ for m > k

 This is a descendant of a D1-D5 state: its geometry is obtained from D1-D5 by a diffeomorphism nontrivial at the AdS boundary

14/24

A class of D1-D5-P states

• One can consider a more general class of states

- Generically these states are not descendants of D1-D5 states
- They are not eigenstates of angular momentum nor of momentum
 ⇒ the dual geometries depend on φ, ψ and v = t + y

How to construct the dual geometries?

General susy ansatz

• The most general geometry preserving the same supercharges as the D1-D5-P black hole and *T*⁴-invariant is

$$ds_{6}^{2} = -\frac{2}{\sqrt{\mathcal{P}}}(dv+\beta)\left(du+\omega+\frac{\mathcal{F}}{2}(dv+\beta)\right) + \sqrt{\mathcal{P}}ds_{4}^{2}, \ \mathcal{P} = Z_{1}Z_{2} - Z_{4}^{2}$$

where $v = \frac{t+y}{\sqrt{2}}, \ u = \frac{t-y}{\sqrt{2}}$

It is encoded by

0) ds₄² (4D euclidean metric), β (1-form in 4D)
1) Z₁, Z₂, Z₄ (0-forms)
2) ω (1-form in 4D), F (0-form)

• Susy implies that u is an isometry. Everything depends on v, x^i

Almost linear structure

- 0) The sugra equations for ds_4^2 , β are non-linear (they define an "almost hyperkahler" structure)
- Assuming ds²₄, β, the equations for Z₁, Z₂, Z₄ are linear and homogeneous
- 2) The equations for ω , \mathcal{F} are linear and inhomogeneous: the sources are quadratic in Z_i 's

Strategy: given ds_4^2 , β , first solve 1) and then solve 2)

A class of D1-D5-P geometries

• Remember we look for the geometry dual to

- Conjecture:
 - strands of type $(J_{-1}^+)^m |0,0\rangle_k$ do not affect ds_4^2 , β
 - strands of type $(J_{-1}^+)^m |0,0\rangle_k$ contribute linearly to Z_4 $\Rightarrow Z_4 = \sum_{k,m} b_{k,m} Z_4^{(k,m)}$ with $b_{k,m}^2 \propto \overline{N}_{k,m} \#$ strands of type $(J_{-1}^+)^m |0,0\rangle_k$

Superstrata

- The contribution $Z_4^{(k,m)}$ of the strands $(J_{-1}^+)^m |0,0\rangle_k$ can be inferred from the change of coordinates corresponding to $e^{\chi J_{-1}^+}$
- Given Z_i 's solve the sugra eqs. for ω , \mathcal{F}
- Regularity: ω is singular unless one includes in Z₁ terms quadratic in b_{k,m}
- Result: for any $\{b_{k,m}\}$ there is a unique regular geometry
- *b_{k,m}* ↔ Fourier coefficients of an arbitrary function of two variables
 D1-D5-P microstates depend at least on functions of 2 variables
 ⇒ supestrata

Holographic 1-point functions

- Holography relates terms of order r^{-2-d} in the asymptotic expansion of the geometry towards the AdS boundary with vevs of dimension d operators in the microstate
- The vevs of chiral primary operators (and their descendants) in 1/4 and 1/8 BPS states are protected
- Examples: operators of dimension 1

(Kanitscheider, Skenderis, Taylor)

•
$$Z_4 \sim \frac{\langle O^{\alpha \dot{\alpha}} \rangle Y_{\alpha \dot{\alpha}}^1}{r^3}$$
 with $O^{\alpha \dot{\alpha}} = \epsilon_{\dot{A}\dot{B}} \psi^{\alpha \dot{A}} \tilde{\psi}^{\dot{\alpha}\dot{B}}$
• $Z_1 \sim \frac{\langle \Sigma_2^{\alpha \dot{\alpha}} \rangle Y_{\alpha \dot{\alpha}}^1}{r^3}$ with $\Sigma_2^{\alpha \dot{\alpha}}$ the twist field with spin $(\pm 1/2, \pm 1/2)$

 $(Y_{\alpha\dot{\alpha}}^1: S^3 \text{ scalar spherical harmonics of order 1})$

1-point functions

A D1-D5-P example

• $O^{--}|+,+\rangle_1 = |0,0\rangle_1 \Rightarrow \langle s|O^{--}|s\rangle \propto ab_1 \leftrightarrow Z_4$

• $\Sigma_2^{--}(|+,+\rangle_1 \otimes |0,0\rangle_1) = |0,0\rangle_2 \Rightarrow \langle s|\Sigma_2^{--}|s\rangle \propto e^{iv} a b_1 b_2 \leftrightarrow Z_1$

• Gravity and CFT match!

Note: the Z_1 coefficient is fixed by regularity on the gravity side

Entanglement entropy

- Consider the EE of one interval of length / in the state $|s\rangle$: $S_{l}^{(s)}$
- CFT: in the limit of $I \to 0$, $S_I^{(s)}$ is encoded by the vevs $\langle s | \mathcal{O}_K | s \rangle$

$$S_{l}^{(s)} = -\frac{\partial S_{n}^{(s)}}{\partial n}|_{n=1}, \ S_{n}^{(s)} = \left(\frac{l}{R}\right)^{-4\Delta_{n}} \left[1 + \sum_{K} \left(\frac{l}{R}\right)^{\Delta_{K} + \bar{\Delta}_{K}} \mathcal{C}_{K} \left\langle s | \mathcal{O}_{K} | s \right\rangle\right]$$

 Gravity: S_l^(s) is given by the area of a minimal co-dimension 2 surface in the 6D geometry (Ryu, Takayanagi; Hubeny, Rangamani)

$$S_l^{(s)} = rac{\operatorname{area}(\gamma_l)}{4G_N}$$

S^(s) is not protected, but if one includes only chiral primary O_K ⇒ gravity and CFT match!

Summary

- We have constructed a family of regular and horizonless D1-D5-P geometries
- We have identified their CFT dual states
- We have checked the gravity-CFT map by computing 1-point functions and entanglement entropy

Note:

- In our states, we act on $|0,0\rangle_k$ strands with powers of J_{-1}^+
- In the NS sector: $J_{-1}^+ \rightarrow J_0^+$
- One could easily extend the construction to $L_{-1} J_{-1}^3 \rightarrow L_{-1}$
- We have the full "graviton gas" (de Boer)

Outlook

- Can one extend the construction to the full chiral algebra $(J^{\alpha}_{-n}, L_{-n}), n > 1$?
- Can one include fractional modes (J^α_{-n/w}, L_{-n/w})?
- If so, one could produce an entropy which scales like $(n_1 n_5 n_p)^{1/2}$
- How well can one resolve typical states in supergravity?
- Need to know the vevs of operators of high enough dimension
- What can one say about non-BPS microstates?