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Introduction

Gravity as the square of Yang-Mills



Bern-Carrasco-Johansson colour-kinematic duality

I Color-dressed n-point tree amplitude of Yang-Mills theory:

Atree
n =

∑
i∈trivalent graphs

cini∏
ai

p2
ai

I For triples of diagrams s.t.

c1 + c2 + c3 = 0 ⇒ ni → ni + si∆︸ ︷︷ ︸
generalised gauge transformations

ci = −cj ⇔ ni = −nj

ci + cj + ck = 0 ⇔ ni + nj + nk = 0

[Bern-Dennen-Huang-Kiermaier:2010]

I Conjectured to hold at loop level! (Beyond KLT relations)
[Bern-Carrasco-Johansson:2008, 2010]
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BCJ double-copy relations

I Conceptually compelling and computationally powerful:

N = 8 supergravity four-point to 4 loops! (finite)

[Bern-Carrasco-Dixon-Johansson-Roiban:2009]

I Can be explained by supersymmetry and E7(7) U-duality [Bjornsson-Green: 2010,

Bossard-Howe-Stelle:2011; Elvang-Freedman-Kiermaier:2011, Bossard-Howe-Stelle-Vanhove:2011]

I At 7 loops any would-be cancellations are “not consequences of
supersymmetry in any conventional sense” (Bjornsson and Green)

I D = 4,N = 5 supergravity finite to 4 loops, contrary to expectations:

“Enhanced” cancellations

[Bern-Davies-Dennen:2014]
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Non-perturbative relations

Double-copy relations between classical solutions:

I Kerr-Schild spacetimes: gµν = ηµν + φkµkν

I Can be obtained as the “double copy” of Yang-Mills solutions:

Aa
µ = k̂µφ

a

I Example: Double copy of Coulomb solution for the superposition of static
colour charge → Schwarzschild black hole

[Monteiro-O’Connell-White:2014]



Questions

To what extent, or in what sense, can one regard gravity as the square of
Yang-Mills?

I Can we understand the origin of BCJ duality?
I Can we go beyond amplitudes?
I Can we relate classical solutions? [Monteiro-O’Connell-White:2014]

I Is there something to say beyond perturbation theory?



Gravity=gauge×gauge dictionary

I “Going on-shell” −→ new relations between gravity and gauge theories

I Mysterious: can we climb back down?

I Build covariant fields of (super)gravity from those of (super) Yang-Mills

I Consistency check: symmetries
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Tensoring states vs fields

Much of the squaring literature invokes a mysterious product:

Aµ(x)⊗ Ãν(x)

[Siegel:1988, 1995]

I Arbitrary non-Abelian gauge groups GL and GR : where do the gauge
indices go?

I Does it obey the Leibnitz rule

∂µ(f ⊗ g) = (∂µf )⊗ g + f ⊗ (∂µg)
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The off-shell product

GL × GR product rule within field theory which is valid whether or not there is
an underlying string interpretation:

f ⊗ g := f ? Φ ? g

I ? denotes a convolutive tensor product with Killing form:

[f ? g ](x) =

∫
dDy〈f (y)⊗ g(x − y)〉

I Φ is the “spectator” GL × GR bi-adjoint scalar field



The off-shell product

GL × GR product rule within field theory which is valid whether or not there is
an underlying string interpretation:

f ⊗ g := f ? Φ ? g

I ? denotes a convolutive tensor product with Killing form:

[f ? g ](x) =

∫
dDy〈f (y)⊗ g(x − y)〉

I Φ is the “spectator” GL × GR bi-adjoint scalar field



Spectator scalar field

I Cachazo-He-Yuan unified scattering formulae:

(CLNL)︸ ︷︷ ︸
left gauge GL

× (CRNR)︸ ︷︷ ︸
right gauge GR

→ (CLCR)︸ ︷︷ ︸
GL×GR scalar

× (NLNR)︸ ︷︷ ︸
gravity

A common form for spin 0, 1, 2 tree-level scattering in any dimension
[Cachazo-He-Yuan:2013]

I Suggests a modified relation:

gauge × gauge = φ3 × gravity

[Hodges:2011, 2012]

(Ambi)twistor-strings [Mason-Skinner:2013, Geyer-Lipstein-Mason:2013,2014]
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N = 1 supergravity from the product of Yang-Mills

Equipped with ? and Φ let’s consider a simple example at linearized level:

D = 4, [N = 1 SYM]⊗ [N = 0 YM]

I (4 + 4) off-shell NL = 1 GL Yang-Mills multiplet:

Aµ, χ, D

I (3 + 0) off-shell NR = 0 GR Yang-Mills multiplet:

Ãν

I Yields (12 + 12) new-minimal N = 1 supergravity:

gµν , Bµν , ψµ, Vµ

with general covariance, 2-form gauge invariance, local supersymmetry and
local chiral symmetry [Sohnius-West:1981]
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Left super Yang-Mills multiplet

I Left real superfield

V (x , θ) ∼ C + i θ̄ζ + iθ2F − θγµθ̄Aµ + iθ2θ̄
(
χ+ /∂ζ

)
+ θ4 (D + �C)

I Transforming under local supergauge and global super-Poincaré:

δV = Λ + Λ̄︸ ︷︷ ︸
local Abelian supergauge

+

global non-Abelian GL︷ ︸︸ ︷
[V ,X ] + δ(a,λ,ε)V︸ ︷︷ ︸

global super-Poincaré

I Λ(x , θ) chiral superfield of supergauge parameters

I Wess-Zumino gauge V → (A, χ,D)

V |WZ = −θσµθ̄Aµ + iθ2θ̄χ̄− i θ̄2θχ+
1
2
θ̄2θ2D
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Right Yang-Mills multiplet

I The right Yang-Mills field Ãν transforms as

δÃν = ∂ν λ̃︸︷︷︸
local Abelian gauge

+

global non-Abelian GR︷ ︸︸ ︷
[Ãν , X̃ ] + δ(a,λ)Aν︸ ︷︷ ︸

global Poincaré

I The spectator bi-adjoint scalar Φ field transforms as

δΦ =

global non-Abelian GL×GR︷ ︸︸ ︷
−[Φ,X ]− [Φ, X̃ ] + δaΦ︸︷︷︸

global Poincaré
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[SYM]× [YM] dictionary

The gravitational symmetries are reproduced here from those of Yang-Mills by
invoking the gravity/Yang-Mills dictionary:

Fields ϕν = V ? Φ ? Ãν real superfield

Paras φ = V ? Φ ? λ̃ real superfield

Sν = Λ ? Φ ? Ãν chiral superfield

Variation: δϕν = δV ? Φ ? Ãν + V ? δΦ ? Ãν + V ? Φ ? δÃν

δϕν = Sν + S̄ν + ∂νφ+ δ(a,λ,ε)ϕν

〈[X ,Y ],Z〉 = 〈X , [Y ,Z ]〉 ∂µ(f ? g) = (∂µf ) ? g = f ? (∂µg)
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N = 1 new-mininal supergravity

New-minimal formulation of N = 1 supergravity:

ϕν(x , θ, θ̄) =Cν + iθχν − i θ̄χ̄ν + iθ2Fν − i θ̄2F̄ν − θσµθ̄(gµν + Bµν)

+ iθ2θ̄

(
ψ̄ν +

i

2
σ̄ρ∂ρχν

)
− i θ̄2θ

(
ψν +

i

2
σρ∂ρχ̄ν

)
+

1
2
θ̄2θ2

(
Vν +

1
2
�Cν

)

At linearised level ϕν(x , θ, θ̄) under local supergauge transformations:

δϕµ = Sµ + S̄µ + ∂µφ+ δ(a,λ,ε)ϕν

[Cecotti et al:1987, Ferrara et al:1988]

I The local gravitational symmetries of general covariance, 2-form gauge
invariance, local supersymmetry and local chiral symmetry follow from
those of Yang-Mills at linear level
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U-duality

I Duff, Khuri, Strominger, Sen, Witten. . . many others
I U-duality [Hull-Townsend:1994]



U-duality

I U-duality: supergravities are characterized by cosets G/H [Cremmer-Julia:1979]

n-torus U-duality G H

1 SO(1, 1,Z) SO(1, 1,R) −
2 SL(2,Z)× SO(1, 1,Z) SL(2,R)× SO(1, 1,R) SO(2,R)
3 SL(2,Z)× SL(3,Z) SL(2,R)× SL(3,R) SO(2,R)× SO(3,R)
4 SL(5,Z) SL(5,R) SO(5,R)
5 SO(5, 5,Z) SO(5, 5,R) SO(5,R)× SO(5,R)
6 E6(6)(Z) E6(6)(R) USP(8)
7 E7(7)(Z) E7(7)(R) SU(8)
8 E8(8)(Z) E8(8)(R) SO(16,R)

I → Consider D = 3, N = 1, 2, 4, 8-extended Yang-Mills theories

I D = 3 amplitude relations [Bargheer-He-McLoughlin:2012; Lipstein-Mason:2012]

I U-dualities and amplitudes also considered in [Bianchi-Elvang-Freedman:2008;

Chiodaroli-Gunaydin-Roiban:2012; Carrasco-Chiodaroli-Gunaydin-Roiban:2013]



Magic Symmetries

[NL SYM]⊗ [NR SYM]→ [NL +NRsugra]

⊗ NR = 1 NR = 2 NR = 4 NR = 8

NL = 1 sl(2,R) su(2, 1) sp(4, 2) f4(−20)
NL = 2 su(2, 1) su(2, 1)× su(2, 1) su(4, 2) e6(−14)
NL = 4 sp(4, 2) su(4, 2) so(8, 4) e7(−5)
NL = 8 f4(−20) e6(−14) e7(−5) e8(8)

Freudenthal-Rozenfeld-Tits magic square ’55

[LB-Duff-Hughes-Nagy:2013]

Sugra magic squares: [Gunaydin-Sierre-Townsend:1985, Cacciatori-Cerchiai-Marrani:2013]



Division algebras and the magic square

Definition
I An algebra A defined over the reals R is said to be composition if it has a

non-degenerate quadratic form n : A→ R such that for a, b ∈ A,

n(ab) = n(a)n(b), ∀a, b ∈ A,

I If n is pos-def then A is a normed division algebra:

ab = 0⇒ a = 0 or b = 0.

Hurwitz’s theorem: There are only 4 normed division algebras

A Construction Dim Division Associative Commutative Ordered
R R 1 yes yes yes yes
C R⊕ e1R 2 yes yes yes no
H C⊕ e2C 4 yes yes no no
O H⊕ e3H 8 yes no no no

S O⊕ e8O 16 no no no no
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Division algebras

The real numbers are the dependable breadwinner of the family, the
complete ordered field we all rely on. The complex numbers are a
slightly flashier but still respectable younger brother: not ordered, but
algebraically complete. The quaternions, being noncommutative, are
the eccentric cousin who is shunned at important family gatherings.

But the octonions are the crazy old uncle nobody lets out of the
attic: they are nonassociative.

[Baez:2002]
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The octonions

I An element x ∈ O may be written

x = xaea, a = 0, . . . , 7, xa ∈ R

I One real e0 = 1 and seven ei , i = 1, . . . , 7, imaginary elements

e∗0 = e0 and e∗i = −ei

I The octonionic multiplication rule is,

eaeb = (δa0δbc + δ0bδac − δabδ0c + Cabc) ec ,

I Cabc is totally antisymmetric such that

C0bc = 0

I The non-zero Cijk are given by the Fano
plane (the projective plane over F2)
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Division algebras and the magic square

I Isometry algebras of R, C and H projective spaces:

Isom(RPn) ∼= so(n+1), Isom(CPn) ∼= su(n+1), Isom(HPn) ∼= sp(n+1)

I Cayley plane: Isom(OP2) ∼= f4

I Rosenfeld OP2 ∼= (R⊗O)P2 → projective planes over AL ⊗AR :

(R⊗O)P2 → f4, (C⊗O)P2 → e6, (H⊗O)P2 → e7, (O⊗O)P2 → e8

AL ⊗AR R C H O

R sl(2,R) su(2, 1) sp(4, 2) f4(−20)
C su(2, 1) su(2, 1)× su(2, 1) su(4, 2) e6(−14)
H sp(4, 2) su(4, 2) so(8, 4) e7(−5)
O f4(−20) e6(−14) e7(−5) e8(8)

Table : Freudenthal magic square [Freudenthal:1954,Rosenfeld:1956,Tits:1966]
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D = 3,N = 8 Yang-Mills

I D = 3, N = 8 super Yang-Mills field content:

{Aµ, φi , λa}, i = 1, . . . 7, a = 1, . . . 8

each valued in the adjoint of the gauge group G

I The Lagrangian is given by

L =− 1
4

FA
µνFAµν − 1

2
Dµφ

A
i DµφA

i + i λ̄A
a γ

µDµλ
A
a

− 1
4

g2fBC
AfDE

AφB
i φ

D
i φ

C
j φ

E
j − gfBC

AφB
i λ̄

AaΓi
abλ

Cb

I Γ can be represented by the octonionic structure constants:

Γi
ab = i(δbiδa0 − δb0δai + Ciab)
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ab = i(δbiδa0 − δb0δai + Ciab)



R,C,H,O description of D = 3,N = 1, 2, 4, 8 Yang-Mills

I D = 3 super Yang-Mills field content:

{Aµ, φi , λa}, i = 1, . . .N − 1, a = 1, . . .N

I A-valued fields:

Aµ ∈ ReA φ ∈ ImA λ ∈ A

Unified description for N = 1, 2, 4, 8:

L =− 1
4

F 2 − 1
2
〈Dµφ,Dµφ〉+ i λ̄ /Dλ− 1

4
g2〈[φ, φ], [φ, φ]〉+

i

2
g [λ̄, φ, λ]

I λ → algebra of octonions defined over the Grassmanns

I [a, b, c] := (ab)c − a(bc) is an alternating function: crucial for susy
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Squaring R,C,H,O Yang-Mills

Tensor left and right division super Yang-Mills multiplets:

{Aµ ∈ ReAL, φ ∈ ImAL, λ ∈ AL}

⊗

{Ãµ ∈ ReAR , φ̃ ∈ ImAR , λ̃ ∈ AR}

Supergravity theory valued in both AL and AR :

gµν ∈ R, Ψµ ∈
(
AL

AR

)
, ϕ ∈

(
AL ⊗AR

AL ⊗AR

)
, χ ∈

(
AL ⊗AR

AL ⊗AR

)

In the maximal case of AL,AR = O:

Ψ ∈ 16 ϕ ∈ 128 χ ∈ 128′ of so(16)
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H algebra

Maximal compact subgroup of U-duality:

Q ∈ A ⇒ Q ⊗ Q̃ ∈ AL ⊗AR



U-duality

I The U-dualities G are realised non-linearly on the scalars in G/H
(See Mario Trigiante’s lectures)

I U-duality Lie algebra is given by the triality construction

tri(AL)⊕ tri(AR) + (AL ⊗AR)︸ ︷︷ ︸
h(AL,AR )

+ (AL ⊗AR)2︸ ︷︷ ︸
“scalars”

,

I Z2 ×Z2 graded Lie algebra structure:

[(a⊗ b, 0, 0), (0, a′ ⊗ b′, 0)] = (0, 0, aa′ ⊗ bb′),

[(0, 0, a⊗ b), (a′ ⊗ b′, 0, 0)] = (0, aa′ ⊗ bb′, 0),

[(0, a⊗ b, 0), (0, 0, a′ ⊗ b′)] = −(aa′ ⊗ bb′, 0, 0).

→ Freudenthal magic square! [LB-Duff-Hughes-Nagy:2013]



D = 3 magic square of supergravities



D = 3, 4, 6, 10 super-Yang-Mills

Division algebras ⇔ Lorentzian spacetime

sl(2,A) ∼= so(1, 2 + dimA)

[Gunaydin-Gursey:1974, Kugo-Townsend:1982, Sudbery:1984 . . . ]

I N = 1 super Yang-Mills in D = 2 + dimA = 3, 4, 6, 10:

L(An) = −1
4
〈F ,F 〉+

1
2
〈λ†,Dλ〉, dimAn = n

(D = n + 2,N ) super Yang-Mills theory ⇔ an ordered pair An ⊆ AnN

[Anastasiou-LB-Duff-Hughes-Nagy:2013, 2014]
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D = 3, 4, 6, 10 Magic Pyramid

Magic pyramid algebra: MPyr(An,AnNL ,AnNR )
[Anastasiou-LB-Duff-Hughes-Nagy:2013]



3 ≤ D ≤ 10 Pyramid
Generalised pyramid

[D = 5, N = 4 SYM] ⌦ [D = 5, N = 4 SYM] ! [D = 5, N = 8 Sugra]Generalised pyramid

[D = 5, N = 4 SYM] ⌦ [D = 5, N = 4 SYM] ! [D = 5, N = 8 Sugra]

Generalised pyramid algebra: Pyr(D[NL,NR ]) [Anastasiou-LB-Hughes-Nagy:2015]



D = 5,N = 4 super Yang-Mills at strong coupling

M5-branes → D = 6,N = (2, 0) superconformal theory

{Bµν , φ[ab], λa}tensor so(2, 6)⊕ usp(4) ⊂ osp(8?|4)

Bµν φ[ab] λa

Aµ

gYM→∞

OO

φ[ab]

OO

λa

OO

D4-branes → D = 5,N = 4 super Yang-Mills theory

{Aµ, φ[ab], λa}sym R-symmetry usp(4)

[Nahm:1979, Blencowe-Duff:87, Witten:95, Strominger:95, Townsend:95, Maldacena:97. . . ]



(2,0) squared?

(D = 6,N = (2, 0) tensor)2

D = 5,N = 8 sugra (D = 5,N = 4 SYM)2
convolutive squareoo

M-theory uplift

OO



(2,0) squared?

Use off-shell dictionary prescription:

I N = (4, 0) superconformal osp(8?|8) multiplet [Nahm:1978]:

(5, 1; 1) + (4, 1; 8) + (3, 1; 27) + (2, 1; 48) + (1, 1; 42)

of su(2)⊕ su(2)⊕ usp(8)

I U-duality: φ ∈ E6(6)/USp(8)

I B
[AB]
µν in linear 27 of E6(6)

I Bµν ⊗ B̃ρσ, Bµν ⊗ λ̃a . . . → exotic D = 6 covariant fields:

Cµνρσ, ψA
µν , B

[AB]
µν , λ[ABC ], φ[ABCD]

Amplitude relations: [Huang-Lipstein:2010; Czech-Huang-Rozali:2012;

Chiodaroli-Gunaydin-Roiban:2012; Carrasco-Chiodaroli-Gunaydin-Roiban:2013]



(2,0) squared?

Unconventional “dual graviton” Cµνρσ = Bµν ⊗ B̃ρσ|105:

Cµνρσ = C[µν][ρσ] = C[ρσ][µν], C[µνρ]σ = 0

I Generalised gauge symmetries:

δBµν = ∂[µλν] → δCµνρσ = ∂[µξν]ρσ + ∂[ρξσ]µν − 2∂[µξν]ρσ

I Gauge for gauge follows automatically from dictionary δλν = λ

I Gauge invariant field strengths:

Hµνρ ⊗ H̃µνρ → Gµνρστλ := 9∂[µCνρ][στ,λ] = G[στλ][µνρ]

I Equations of motion and Bianchi identities:

dH = 0, dH̃ = 0 → G[µνρσ]τλ = 0, ∂[κGµνρ]στλ = 0

H = ?H, H̃ = ?H̃ → G = ?G = G?



(2,0) squared?

D = 6,N = (4, 0) D = 6,N = (2, 0)
convolutive squareoo

D = 5,N = 8 sugra D = 5,N = 4 SYM
convolutive squareoo

M-theory uplift

OO



(4,0) superconformal limit of M-theory on T 6

“Squaring” reproduces Chris Hull’s proposal for an exotic superconformal
D = 6,N = (4, 0) theory [Hull:2000, Hull:2001]:

Cµνρσ, ψA
µν , B [AB]

µν , λ[ABC ], φ[ABCD]

I Strong gravitational coupling limit of D = 5,N = 8 supergravity

I Requires: E6(6) U-duality, 42 scalars, 27 2-forms plus conformal symmetry

I The unique D = 6,N = 8 supergravity theory fails on all counts

I Hull showed how the free D = 6,N = (4, 0) theory dimensionally reduces
to conventional D = 5,N = 8 supergravity

I Cµνρσ → hµν , h̃µν , h̄µν all identified by D = 6 two-sided self-duality



All roads lead to (4, 0)

D = 6,N = (4, 0) D = 6,N = (2, 0)
convolutive squareoo

D = 5,N = 8 sugra

M-theory uplift

OO

D = 5,N = 4 SYM
convolutive squareoo

M-theory uplift

OO

Conjecture: the exotic (4, 0) theory is the strong coupling limit of
D = 5,N = 8 supergravity [Hull:2000, Hull:2001]

The most symmetric phase of M-theory



Conformal Pyramid

Figure 3: The conformal magic pyramid. Note, the exterior faces, up to real forms, are given by the magic square (i.e.
the 4 ⇥ 4 base) cut across its diagonal.

trading the maximal super Yang-Mills in D = 6 for the (2, 0) tensor mulitplet swaps the resulting
maximal supergravity with SO(5, 5) U-duality for the non-gravitational (4, 0) self-dual-Weyl multiplet
with E6(6) U-duality considered in [14, 46, 47]. Given the recent progress in understanding three-
dimensional supergravity amplitudes as double copies of Bagger-Lambert-Gustavsson theories [48],
one might anticipate applications to this line of enquiry. More speculatively, the conformal pyramid
in D = 3, 4, 6 suggests an exotic D = 10 theory with global symmetry F4(4), although it would have
to be highly non-conventional (even heretical) from the standard perspective on the classification of
supermultiplets. For earlier appearances of F4 in 10 and 11 dimensions see [49–53].

F4(4) E6(6) E7(7) E8(8) SO?(12) E7(�5)

SU?(6) E6(6) SU(1, 5) F4(�20)

Note, in the present paper the complete Freudenthal-Rosenfeld-Tits magic square describes the U-
dualities of conventional D = 3 supergravities. Its role here is not to be confused with its appearance
in the important, and aptly named, “magic supergravities” of Günaydin-Sierre-Townsend [54, 55]. In
this context the C,H, and O rows of the magic square (with a di↵erent set of real forms) describe the
U-dualities of the magic supergravities in D = 5, 4 and 3 respectively. The magic square also appeared
previously in a further, distinct, supersymmetric setting in [56].

In section 2 we review division algebras and the square construction, giving the details of our
formulation of Table 1, which were omitted from [15]. In section 3 we briefly recall the division
algebraic description of SYM and then construct the magic pyramid of supergravitites. In section 4
we introduce the conformal pyramid.
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Component form

Wess-Zumino gauge ϕµ|WZ = V |WZ ⊗ Ãν :

gµν + Bµν = Aµ ⊗ Ãν δZµν = ∇ναµ(L) +∇µαν(R)

ψν = χ ⊗ Ãν ⇒ δψµ = ∇µη
Vν = D ⊗ Ãν δVµ = ∇µΛ

Consistency check:
δWZ
ε V = δεV + ΛWZ + Λ̄WZ

δWZ
ε ϕν = δεϕν + SWZ

ν + S̄WZ
ν

→ consistently preserves the WZ gauge choice imposed on ϕν
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Equations of motion

Off-shell Lorentz multiplet:

Vab|WZ ∼ (Ωµab
−, ψab,−2Vab

+)

[deRoo et al:1991]

Transformation rules

δVab = Λab + Λ̄ab + δ(a,λ,ε)Vab.

follow from dictionary:

Vab = V ? Φ ? F ab

Λab = Λ ? Φ ? F ab

The corresponding Riemann tensors including torsion terms are given by

R+
µνρσ = −Fµν ? Φ ? F̃ρσ = R−ρσµν

Yang-Mills equations ⇔ Einstein’s equations
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