

Specular reflection and diffraction in the Casimir effect

Gert-Ludwig Ingold Michael Hartmann Benjamin Spreng Paulo A. Maia Neto Vinicius Henning

Universität Augsburg

Universidade Federal do Rio de Janeiro

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Quantum fluctuations of the electromagnetic field

vacuum energy from modes

radiation pressure

vacuum fluctuations under the influence of boundary conditions

Some applications

colloids

MEMS and NEMS

search for fifth fundamental force

Scattering theoretical approach in one dimension

change of vacuum energy due to a scatterer

U

$$\Delta E_{\rm vac} = \frac{i\hbar c}{4\pi} \int_0^\infty {\rm d}k \ln\left(\det(S)\right)$$

$$\det(S) = \det(S_1) \det(S_2) \frac{1 - [\bar{r}_1 r_2 e^{2ikL}]^*}{1 - [\bar{r}_1 r_2 e^{2ikL}]}$$

$$\Delta E_{\rm vac} = \Delta E_{\rm vac}^{(1)} + \Delta E_{\rm vac}^{(2)} + \Delta E_{\rm vac}^{(L)}$$

Casimir energy

$$\Delta E_{\rm vac}(L) = \Delta E_{\rm vac} - \Delta E_{\rm vac}^{(1)} - \Delta E_{\rm vac}^{(2)} = \frac{\hbar c}{2\pi} \operatorname{Im} \int_0^\infty dk \, \ln\left[1 - \bar{r}_1 r_2 e^{2ikL}\right]$$

for a pedagogical presentation see GLI, A. Lambrecht, Am. J. Phys. 83, 156 (2015)

Scattering theoretical approach with dissipation

$$\begin{aligned} \det \mathbf{S} &= \det(\mathbf{S}_1) \det(\mathbf{S}_2) \det(\mathbf{S}_L) \frac{\det(\mathcal{D}_{21})}{\det(\mathcal{D}_{21})^*} \\ \text{with} \quad \mathcal{D}_{21} &= \left(1 - \mathbf{S}_1^{ii} \mathbf{T}_{12}^{ii} \mathbf{S}_2^{ii} \mathbf{T}_{21}^{ii}\right)^{-1} \end{aligned}$$

Casimir energy at zero temperature

$$E_{\text{vac}}(L) = \hbar \int_0^\infty \frac{d\xi}{2\pi} \log \det \left[\mathbf{1} - \mathbf{S}_1^{\text{ii}} \mathbf{T}_{12}^{\text{ii}} \mathbf{S}_2^{\text{ii}} \mathbf{T}_{21}^{\text{ii}}(\xi) \right]$$

R. Guérout, GLI, A. Lambrecht, S. Reynaud, Symmetry 10, 37 (2018)

Casimir free energy at finite temperature

$$\mathcal{F}(L) = \frac{k_{\rm B}T}{2} \sum_{n=-\infty}^{\infty} \log \det \left[\mathbf{1} - \mathbf{S}_1^{\rm ii} \mathbf{T}_{12}^{\rm ii} \mathbf{S}_2^{\rm ii} \mathbf{T}_{21}^{\rm ii} (|\boldsymbol{\xi}_n|) \right] \qquad \boldsymbol{\xi}_n = \frac{2\pi \hbar n}{k_{\rm B}T}$$

Some experimental setups

Universität

Augsburg University

IN

TONTINET CO

Experimental aspect ratios

Universität Augsburg University

aspect ratio

- $R \leftarrow \text{sphere radius}$
- $L \leftarrow \text{distance plane-sphere}$

Length scales

- even room temperature can be a very low temperature
- the sphere radius is often the (by far) largest length scale

Numerics for the sphere-plane geometry

proximity force approximation (PFA)

- Casimir force is non-additive
- PFA from semiclassics in k space and its leading correction

intermediate aspect ratios

- accurate description of experiments
- theoretical understanding of corrections to PFA

M. Hartmann, GLI, P. A. Maia Neto, Phys. Rev. Lett. **119**, 043901 (2017) Phys. Scr. **93**, 114003 (2018)

multipole expansion

- ℓ_{max} increases linearly with aspect ratio
- numerics for larger aspect ratios becomes demanding

Numerics for the sphere-plane geometry

proximity force approximation (PFA)

- Casimir force is non-additive
- PFA from semiclassics in k space and its leading correction

intermediate aspect ratios

- accurate description of experiments
- theoretical understanding of corrections to PFA

M. Hartmann, GLI, P. A. Maia Neto, Phys. Rev. Lett. **119**, 043901 (2017) Phys. Scr. **93**, 114003 (2018)

multipole expansion

- ℓ_{\max} increases linearly with aspect ratio
- numerics for larger aspect ratios becomes demanding

Proximity force approximation

free energy

$$\mathcal{F}_{\mathsf{PFA}} = -\frac{k_{\mathsf{B}}TR}{4} \sum_{n=-\infty}^{+\infty} \sum_{p \in \{\mathsf{TE},\mathsf{TM}\}} \int_{|\xi_n|/c}^{\infty} \mathrm{d}\kappa \operatorname{Li}_2\left(r_p^{(1)}r_p^{(2)}\mathrm{e}^{-2\kappa L}\right), \quad \xi_n = \frac{2\pi nk_{\mathsf{B}}T}{\hbar}$$

force

$$F_{\text{PFA}} = 2\pi R \mathcal{F}_{\text{PP}}(L, T)$$
 Lifshitz formula

with free energy in plane-plane geometry

$$\mathcal{F}_{PP} = \frac{k_{B}T}{2} \sum_{n=-\infty}^{+\infty} \sum_{p \in \{TE,TM\}} \int_{|\xi_{n}|/c}^{\infty} \frac{\mathrm{d}\kappa}{2\pi} \kappa \log\left(1 - r_{p}^{(1)}r_{p}^{(2)}\mathrm{e}^{-2\kappa L}\right)$$

finite temperature

arbitrary materials through Fresnel coefficients r_p

Zero temperature and perfect reflectors

Casimir energy at zero temperature for perfect reflectors

$$\mathcal{E} = \mathcal{E}_{\text{PFA}}\left(1 + \beta_1 \frac{L}{R} + o(R^{-1})\right)$$

proximity force approximation

$$\mathcal{E}_{\mathsf{PFA}} = \frac{\hbar c \pi^3 R}{720 L^2}$$

NTLO correction

$$\beta_1 = \frac{1}{3} - \frac{20}{\pi^2} \approx -1.693\ldots$$

- polarization mixing?
- diffraction effects?

Previous work

- ▶ semiclassics in real space → *E*_{PFA}
 M. Schaden, L. Spruch, Phys. Rev. A **58**, 935 (1998)
 R. L. Jaffe, A. Scardicchio, Phys. Rev. Lett. **92**, 070402 (2004)
 A. Scardicchio, R. L. Jaffe, Nucl. Phys. B **704**, 552 (2005)
 A. Bulgac, P. Magierski, A. Wirzba, Phys. Rev. D **73**, 025007 (2006)
- ► asymptotic expansion of scattering formula in multipole basis $\rightarrow \beta_1$ M. Bordag, V. Nikolaev, J. Phys. A **41**, 164002 (2008)

L. P. Teo, M. Bordag, V. Nikolaev, Phys. Rev. D 84, 125037 (2011)

• derivative expansion $\rightarrow \beta_1$

G. Bimonte, T. Emig, R. L. Jaffe, M. Kardar, EPL 92, 50001 (2012)

Angular spectral representation

polarizations

$$\hat{\boldsymbol{\varepsilon}}_{\mathsf{TE}} = rac{\hat{\mathbf{z}} imes \hat{\mathbf{K}}}{|\hat{\mathbf{z}} imes \hat{\mathbf{K}}|}, \qquad \hat{\boldsymbol{\varepsilon}}_{\mathsf{TM}} = \hat{\boldsymbol{\varepsilon}}_{\mathsf{TE}} imes \hat{\mathbf{K}}$$

wave vector

$$K_z = \phi k_z$$
, $k_z = \sqrt{\frac{\omega^2}{c^2} - \mathbf{k}^2}$

basis function

$$\langle x, y, z | \omega, \mathbf{k}, p, \phi \rangle = \hat{\epsilon}_p \sqrt{\frac{1}{2\pi} \left| \frac{\omega}{ck_z} \right|} e^{i(\mathbf{k} \cdot \mathbf{r} + \phi k_z z)}$$

Round-trip expansion

Wick rotation

free energy

$$\mathcal{F} = \frac{k_{\rm B}T}{2} \sum_{n=-\infty}^{+\infty} \operatorname{tr} \log\left[1 - \mathcal{M}(|\xi_n|)\right]$$

round-trip operator

$$\mathcal{M} = \mathcal{T}_{SP} \mathcal{R}_{P} \mathcal{T}_{PS} \mathcal{R}_{S}$$

round-trip expansion

$$\mathcal{F} = -\frac{k_{\rm B}T}{2} \sum_{n=-\infty}^{+\infty} \sum_{r=1}^{\infty} \frac{1}{r} \operatorname{tr} \mathcal{M}^{r}(|\xi_{n}|)$$

r round trips

$$\operatorname{tr} \mathcal{M}^{r} = \sum_{p_{1},\dots,p_{2r}} \int \frac{d\mathbf{k}_{1}\dots d\mathbf{k}_{2r}}{(2\pi)^{4r}} e^{-(\kappa_{1}+\dots+\kappa_{2r})(L+R)} \times \langle \mathbf{k}_{1}, p_{1}, + |\mathcal{R}_{P}|\mathbf{k}_{2r}, p_{2r}, - \rangle \dots \langle \mathbf{k}_{2}, p_{2}, -|\mathcal{R}_{S}|\mathbf{k}_{1}, p_{1}, + \rangle$$

- reflection matrix elements
 - plane: Fresnel coefficient, k conserved
 - sphere: Debye expansion
- saddle-point evaluation of the momentum space integrals

CINTIA EL CON

Scattering plane and Fresnel planes

at saddle point: Fresnel plane and scattering plane coincide ($\chi^{(in/out)} = 0$) for NTLO correction: tilt needs to be accounted for ($\chi^{(in/out)} \neq 0$)

Universität Augsburg University

Debye expansion

scattering amplitude \rightarrow geometrical optics

$$S_p^{WKB} = (-1)^p \frac{\xi R}{2c} \exp\left[\frac{2\xi R}{c}\sin\left(\frac{\Theta}{2}\right)\right]$$

with leading corrections

$$S_{p} = S_{p}^{WKB} \left(1 + \frac{1}{R} s_{p} + O\left(R^{-2}\right) \right)$$

$$s_{\perp} = \frac{c}{2\xi} \frac{\cos(\Theta)}{\sin^3(\Theta/2)}$$
$$s_{\parallel} = -\frac{c}{2\xi} \frac{1}{\sin^3(\Theta/2)}$$

Matrix elements for reflection at large spheres

$$\langle \mathbf{k}^{(\text{out})}, p^{(\text{out})}, -|\mathcal{R}_{\text{S}}|\mathbf{k}^{(\text{in})}, p^{(\text{in})}, + \rangle \simeq \frac{\pi R}{\kappa^{(\text{out})}} \exp\left[\frac{2\xi R}{c}\sin\left(\frac{\Theta}{2}\right)\right] \rho_{p^{(\text{out})}, p^{(\text{in})}}$$

perfect reflectors ($r_{\rm TM} = 1, r_{\rm TE} = -1$)

$$\rho_{\text{TM,TM}} = (A - B) + \frac{1}{R} \left(As_{\parallel} - Bs_{\perp} \right) \qquad \rho_{\text{TE,TE}} = -(A - B) - \frac{1}{R} \left(As_{\perp} - Bs_{\parallel} \right)$$
$$\rho_{\text{TE,TM}} = (C - D) + \frac{1}{R} \left(Cs_{\perp} - Ds_{\parallel} \right) \qquad \rho_{\text{TM,TE}} = (C - D) + \frac{1}{R} \left(Cs_{\parallel} - Ds_{\perp} \right)$$

$$A = \cos(\chi^{(out)}) \cos(\chi^{(in)}) \qquad B = \sin(\chi^{(out)}) \sin(\chi^{(in)}) \\ C = \sin(\chi^{(out)}) \cos(\chi^{(in)}) \qquad D = -\cos(\chi^{(out)}) \sin(\chi^{(in)})$$

$$\mathrm{tr}\mathcal{M}^{r} = \left(\frac{R}{4\pi}\right)^{r} \int \mathrm{d}\mathbf{k}_{0} \dots \mathrm{d}\mathbf{k}_{r-1} \, g(\mathbf{k}_{0}, \dots, \mathbf{k}_{r-1}) e^{-Rf(\mathbf{k}_{0}, \dots, \mathbf{k}_{r-1})}$$

saddle-point manifold

$$\mathbf{k}_0 = \cdots = \mathbf{k}_{r-1} \equiv \mathbf{k}_{sp}$$

consequences for leading order (PFA)

- scattering plane and Fresnel planes coincide ($\chi^{(in)} = \chi^{(out)} = 0$)
- no polarization mixing (A = 1, B = C = D = 0)

Saddle-point approximation and leading-order correction

$$\operatorname{tr} \mathcal{M}^{r} = \left(\frac{R}{4\pi}\right)^{r} \int d\mathbf{k}_{0} \dots d\mathbf{k}_{r-1} g(\mathbf{k}_{0}, \dots, \mathbf{k}_{r-1}) e^{-Rf(\mathbf{k}_{0},\dots,\mathbf{k}_{r-1})}$$
$$= \frac{R}{2r} \int_{\xi/c}^{\infty} d\kappa_{\mathrm{sp}} \kappa_{\mathrm{sp}}^{r} \left[F_{0} + \frac{1}{R}F_{1} + o\left(R^{-1}\right)\right]$$

with

$$F_{0} = g|_{sp}$$

$$F_{1} = g|_{sp} \left(\sum_{ijk} \frac{2f_{ijk}f_{\bar{i}\bar{j}\bar{k}} + 3f_{ij\bar{j}}f_{\bar{i}k\bar{k}}}{24\lambda_{i}\lambda_{j}\lambda_{k}} - \sum_{ij} \frac{f_{\bar{i}\bar{j}\bar{j}}}{8\lambda_{i}\lambda_{j}} \right) + \sum_{ij} \frac{g_{i}f_{\bar{i}\bar{j}\bar{j}}}{2\lambda_{i}\lambda_{j}} + \sum_{i} \frac{g_{i\bar{i}}}{2\lambda_{i}}$$

$$\lambda_{j}: \text{ eigenvalues of Hessian} \qquad \bar{i} = r - i$$

saddle-point approximation (F_0) \rightarrow Lifshitz formula for the Casimir force

 $F \simeq 2\pi R_{\rm eff} \mathcal{F}_{\rm PP}(L,T)$

free energy per area in plane-plane geometry

$$\mathcal{F}_{PP}(L,T) = \frac{k_{B}T}{2} \sum_{n=-\infty}^{+\infty} \sum_{p \in \{TE,TM\}} \int_{|\xi_{n}|/c}^{\infty} \frac{d\kappa}{2\pi} \kappa \\ \times \log\left(1 - r_{p}^{(1)}r_{p}^{(2)}e^{-2\kappa L}\right)$$

effective radius

$$R_{\rm eff} = \frac{R_1 R_2}{R_1 + R_2}$$

Effective area

change of k = |k| allowed by Gaussian width

$$\delta k \sim \frac{1}{\sqrt{LR_1}}$$

Universität Augsburg

▶ relevant angles for $\vartheta \ll 1$

$$\vartheta \lesssim \frac{\delta k}{2k_z}$$

cutoff on k_z

 $k_z \sim 1/L$

effective area $A \sim R_1 L \ll R_1 < R_2$ contribution from thermal fluctuations

$$A^{(T)} \sim \frac{\hbar c}{k_{\rm B}T} R_1$$

Leading-order correction

$$\operatorname{tr} \mathcal{M}^{r} = \left(\frac{R}{4\pi}\right)^{r} \int d\mathbf{k}_{0} \dots d\mathbf{k}_{r-1} g(\mathbf{k}_{0}, \dots, \mathbf{k}_{r-1}) e^{-Rf(\mathbf{k}_{0}, \dots, \mathbf{k}_{r-1})}$$
$$= \frac{R}{2r} \int_{\xi/c}^{\infty} d\kappa_{\mathrm{sp}} \kappa_{\mathrm{sp}}^{r} \left[F_{0} + \frac{1}{R}F_{1} + o\left(R^{-1}\right)\right]$$

- diffractive corrections in $F_0 = g|_{sp}$
- ► higher-order saddle-point approximation exploiting symmetry of functions f and g →

$$F_{1} = g|_{sp} \left(\sum_{ijk} \frac{f_{ijk} f_{\bar{i}\bar{j}\bar{k}}}{12\lambda_{i}\lambda_{j}\lambda_{k}} - \sum_{ij} \frac{f_{i\bar{i}\bar{j}\bar{j}}}{8\lambda_{i}\lambda_{j}} \right) + \sum_{i} \frac{g_{i\bar{i}}}{2\lambda_{i}}$$

Diffractive correction

contribution arising from $F_0 = g|_{sp}$

- leading term: proximity force approximation
- leading correction: diffraction

perfect reflectors, zero temperature

$$\mathcal{E}_{p} = \mathcal{E}_{\text{PFA}}\left(\frac{1}{2} + \beta_{d,p}\frac{L}{R}\right)$$

diffractive contribution from the two polarizations

$$\beta_{d, TE} = -\frac{25}{2\pi^2}$$
 $\beta_{d, TM} = -\frac{5}{2\pi^2} = \frac{1}{5}\beta_{d, TE}$

total diffractive correction

$$\beta_{\rm d} = -\frac{15}{\pi^2}$$

Geometrical optics correction

$$F_{1} = g|_{sp} \left(\sum_{ijk} \frac{f_{ijk} f_{\bar{i}\bar{j}\bar{k}}}{12\lambda_{i}\lambda_{j}\lambda_{k}} - \sum_{ij} \frac{f_{i\bar{i}\bar{j}\bar{j}}}{8\lambda_{i}\lambda_{j}} \right) + \sum_{i} \frac{g_{i\bar{i}}}{2\lambda_{i}}$$

- only the last term can account for polarization mixing
- one finds that the polarization mixing terms cancel each other
- F₁ can be interpreted as arising from specular reflection, but at a tilted tangent plane [process (ii)]

both polarizations contribute equally with a sum of

$$\beta_{\rm go} = \frac{1}{3} - \frac{5}{\pi^2}$$

Leading correction

Casimir energy at zero temperature for perfect reflectors

$$\mathcal{E} = \frac{\hbar c \pi^3 R}{720L^2} \left[1 + \left(\frac{1}{3} - \frac{20}{\pi^2}\right) \frac{L}{R} + o(R^{-1}) \right]$$

leading correction

	TE	TM
diffraction	74.8%	15.0%
geometrical optics	5.1%	5.1%

- dominant contribution due to diffraction in the TE mode
- diffraction contribution depends on polarization
- geometrical optics contribution independent of polarization

leading correction to PFA based on electromagnetic field

$$eta_{\text{TE}} = rac{1}{6} - rac{15}{\pi^2} \qquad eta_{\text{TM}} = rac{1}{6} - rac{5}{\pi^2}$$

leading correction to PFA based on scalar fields

G. Bimonte, T. Emig, R. L. Jaffe, M. Kardar, EPL 97, 50001 (2012) L. P. Teo, M. Bordag, V. Nikolaev, Phys. Rev. D 84, 125037 (2011)

Dirichlet boundary conditions
$$\beta_{DD} = \frac{1}{6}$$

Neumann boundary conditions $\beta_{NN} = \frac{1}{6} - \frac{20}{\pi^2}$

total leading correction to PFA

$$\beta_1 = \beta_{\text{TE}} + \beta_{\text{TM}} = \beta_{\text{DD}} + \beta_{\text{NN}} = \frac{1}{3} - \frac{20}{\pi^2}$$

Conclusions

- The Casimir free energy in the sphere-plane geometry has been calculated semiclassically in momentum space for large spheres accounting fully for the electromagnetic field.
- The results allow for an interpretation in terms of geometrical optics and diffraction.
- The proximity force approximation has been derived for arbitrary temperatures and materials.
- The leading correction has been derived for perfect reflectors at zero temperature highlighting the role of diffraction.

references:

- B. Spreng, M. Hartmann, V. Henning, P. A. Maia Neto, GLI Phys. Rev. A 94, 062504 (2018)
- V. Henning, B. Spreng, M. Hartmann, GLI, P. A. Maia Neto to appear in J. Opt. Soc. Am. B (2019); arXiv:1811.12856