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Introduction



The AdS/CFT correspondence can be thought of as providing a nonper-
turbative definition of closed string theory in terms of a gauge theory
without containing gravity.

In the standard explanation of the AdS/CFT correspondence we consider
the theory on D-branes and take the low-energy limit.

The gauge theory which provides a nonperturbative definition of closed
string theory is obtained from the low-energy limit of the open string
sector.
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A key ingredient for proving the AdS/CFT correspondence is the equiv-
alence of string theory with holes in the world-sheet and string theory
on a different background without holes in the world-sheet.
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This was discussed in the context of the large N duality of the topological
string. hep-th/0205297, Ooguri and Vafa

Figures taken from hep-th/0205297 by Ooguri and Vafa
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where

Fg(t) =
∞∑

h=1

thFg,h (1.2)

and the coefficients Fg,h may be a function of other parameters defining the theory. The

statement that this is an expansion in powers of 1/N is the same as saying this is an

expansion in powers of g2
YM, as shown in the above, since g2

YMN is held fixed. The gen-

eral conjecture of ‘t Hooft is that at large N , with g2
YMN = t held fixed, an equivalent

description should involve closed Riemann surfaces which are obtained from the ribbon

graphs by “filling holes with disks.” Compare Figure 1 of a ribbon graph and Figure 2 of

the corresponding Riemann surface:

Figure 1: A Ribbon graph with g = 1 and h = 9.

Figure 2: The corresponding Riemann surface. The holes in the ribbon graph in Figure 1 are

filled with shaded regions, all of which have the topology of the disk.

In string theory, various U(N) gauge theories can be realized on D branes. There, the

ribbon graphs “come to life” as open string worldsheets with holes ending on D branes. In
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This was also discussed recently using the pure-spinor formalism.
arXiv:1903.08264, Berkovits

Figure taken from arXiv:1903.08264 by Berkovits
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Fig. 1: 3-point amplitude on sphere where orange circles are closed string vertex
operators, blue strips are thickened propagators near the AdS boundary, white

regions are D3-brane holes near the AdS horizon, black dots are picture-raising
operators, and red dots are beads E on the closed strings

Fig. 2: Open-closed amplitude on disk where purple lines are open string vertex

operators
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Even if we assume this equivalence, it is difficult to see gravity directly
from the gauge theory, and one reason for this is that the world-sheet
picture is gone after taking the low-energy limit.

This motivates us to consider open string field theory as a theory on D-
branes before taking the low-energy limit.

In the AdS/CFT correspondence we consider correlation functions of
gauge-invariant operators on the gauge theory side. We are therefore
interested in correlation functions of gauge-invariant operators of open
string field theory in this context.

While it is in general difficult to construct gauge-invariant operators in
string field theory, a class of gauge-invariant operators have been con-
structed in open bosonic string field theory.

hep-th/0111092, Hashimoto and Itzhaki
hep-th/0111129, Gaiotto, Rastelli, Sen and Zwiebach
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The action of open bosonic string field theory is given by
Witten, Nucl. Phys. B268 (1986) 253

S = − 1

2
⟨Ψ, QΨ ⟩ − g

3
⟨Ψ,Ψ ∗Ψ ⟩ ,

where g is the open string coupling constant, Q is the BRST operator,
⟨A,B ⟩ and A ∗ B are the BPZ inner product and the star product,
respectively, defined for a pair of states A and B.

The action is invariant under the gauge transformation given by

δΛΨ = QΛ+ g (Ψ ∗ Λ− Λ ∗Ψ ) .
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The gauge-invariant operator AV [Ψ ] for an on-shell closed string vertex
operator V is defined by

AV [Ψ ] = ⟨V(i) fI ◦Ψ(0) ⟩UHP

with

fI(z) = tan
(
2 arctan z

)
=

2 z

1− z2
.

24

↓
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These gauge-invariant operators have an interesting origin in open-closed
string field theory.

A one-parameter family of formulations for open-closed bosonic string
field theory were constructed, and it was observed that in a singular
limit the action reduces to that of the cubic open bosonic string theory
with an additional vertex which couples one off-shell open string field
and one on-shell closed string field.

hep-th/9202015, Zwiebach

S = − 1

2
⟨Ψ, QΨ ⟩ − g

3
⟨Ψ,Ψ ∗Ψ ⟩+ 1

g
⟨ J(Φ),Ψ ⟩ ,

where Φ is the on-shell closed string field and J(Φ) is a map from a closed
string field to an open string field.
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The kinetic term of the closed string field is absent so that the resulting
theory is no longer open-closed string field theory.

It is open string field theory with source terms for a set of gauge-invariant
operators:

⟨ J(Φ),Ψ ⟩ =
∑

α

Gα AVα [Ψ ]

with
Φ =

∑

α

Gα Φα , QΦ = 0 ,

where Φα is the state corresponding to the on-shell vertex operator Vα.

We can show that the action with the source term is gauge-invariant
using the following properties of J(Φ):

QJ(Φ) = 0 , J(Φ) ∗ A = A ∗ J(Φ)

for any open string field A.
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https://agenda.infn.it/event/18134/contributions/89052/attachments/62976/75690/SFT2019-Okawa.pdf

https://www.youtube.com/watch?v=TPkq_BS-2tw&list=PL1CFLtxeIrQqo-_lNROpUSBb07ON5xBvz&index=13

An important consequence from this relation of the gauge-invariant op-
erators and open-closed string field theory is that Feynman diagrams
for correlation functions of the gauge-invariant operators are given by
Riemann surfaces containing holes with bulk punctures and the moduli
space of such Riemann surfaces is covered.

Let us now consider the theory on N coincident D-branes. If we evaluate
correlation functions of the gauge-invariant operators in the 1/N expan-
sion, by construction it reproduces the closed-string perturbation theory
with holes in the world-sheet we mentioned before.

Thus to consider open string field theory as a theory before taking the
low-energy limit can be a promising way for proving the AdS/CFT cor-
respondence and for defining closed string theory nonperturbatively be-
cause we can keep track of the world-sheet picture in the limit.

See my talk last year in Florence for further details.
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Of course, we need to extend the discussion to open superstring field the-
ory, as quantization of open bosonic string field theory is formal because
of tachyons in generic backgrounds.

While the action of open superstring field theory involving the Ramond
sector had not been constructed for many years, this problem was recently
overcome and we now have several formulations of open superstring field
theory which are complete at the classical level.

arXiv:1508.00366, Kunitomo and Okawa
arXiv:1508.05387, Sen
arXiv:1602.02582, Erler, Okawa and Takezaki
arXiv:1602.02583, Konopka and Sachs

We consider that it is time to study open superstring field theory in this
context.
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On the other hand, it would be also useful to consider gauge-invariant
operators of open bosonic string field theory in the noncritical string or
in the topological string where tachyons are absent.

• It was shown that open bosonic string field theory on FZZT branes
has been shown to reduce to the Kontsevich model.

hep-th/0312196, Gaiotto and Rastelli

• Three-dimensional Chern-Simons gauge theory can be formulated
as open string field theory in the topological string.

hep-th/9207094, Witten

• The duality in the B-model topological string theory is also dis-
cussed recently. arXiv:1812.09257, Costello and Gaiotto

With the extension to open superstring field theory in mind, let us begin
with the discussion in open bosonic string field theory.
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The effective action
for massless fields



Construction of the low-energy effective action of string field theory was
discussed by Sen for closed superstring field theory.

arXiv:1609.00459, Sen

The string field projected onto the massless sector is used to describe the
low-energy effective action, and it was shown that the gauge invariance of
the low-energy effective action inherited from that of the original theory.

The same strategy can be applied to open bosonic string field theory, and
we consider the action including the source terms for the gauge-invariant
operators and use the string field projected onto the massless sector to
study gauge-invariant operators in the low energy.

In the case of open bosonic string field theory, however, we can integrate
out massive fields only classically because, as we mentioned before, the
existence of tachyons in the open string and in the closed string renders
the quantization formal.
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One puzzling feature regarding gauge-invariant operators of open bosonic
string field theory in our context is that they depend linearly on the open
string field.

For example, the energy-momentum tensor is a typical example of the
gauge-invariant operators we consider in the AdS/CFT correspondence,
but the gauge-invariant operators of open bosonic string field theory do
not resemble familiar energy-momentum tensors.

We will show that nonlinear dependence on the open string field is gen-
erated in the process of integrating out massive fields.

Although our discussion is in the bosonic theory and classical, the mech-
anism of generating nonlinear dependence can be easily understood in
terms of Feynman diagrams, and we expect that the same mechanism
will work in the quantum theory of the superstring.
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We denote the projection operator onto the massless sector by P . The
string field Ψ for massless fields satisfies

P Ψ = Ψ .

The effective action for massless fields is given by

S = − 1

2
⟨Ψ, QΨ ⟩ − g

3
⟨Ψ,Ψ ∗Ψ ⟩

+
g2

2
⟨Ψ ∗Ψ,

b0
L0

(1− P ) (Ψ ∗Ψ) ⟩+O(g3) ,

where b0 is the zero mode of the b ghost and L0 is the zero mode of the
energy-momentum tensor.

+ −→
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We can show that the action is invariant up to O(g2) under the gauge
transformation given by

δΛΨ = QΛ+ gP (Ψ ∗ Λ− Λ ∗Ψ )

+ g2P [−h (Ψ ∗Ψ) ∗ Λ+ h (Ψ ∗ Λ) ∗Ψ− h (Λ ∗Ψ) ∗Ψ
−Ψ ∗ h (Ψ ∗ Λ) +Ψ ∗ h (Λ ∗Ψ) + Λ ∗ h (Ψ ∗Ψ) ]

+O(g3) ,

where

h =
b0
L0

(1− P ) .
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The action with the source term is given by

S = − 1

2
⟨Ψ, QΨ ⟩ − g

3
⟨Ψ,Ψ ∗Ψ ⟩+ κ

g
⟨ J(Φ),Ψ ⟩ ,

where we introduced the parameter κ to count the power of the source
in J(Φ).

Let us add the coupling
κ

g
⟨ J(Φ),Ψ ⟩

to the effective action for massless fields:

S = − 1

2
⟨Ψ, QΨ ⟩ − g

3
⟨Ψ,Ψ ∗Ψ ⟩+ g2

2
⟨Ψ ∗Ψ, h (Ψ ∗Ψ) ⟩+O(g3)

+ κ

[
1

g
⟨ J(Φ),Ψ ⟩+O(g0)

]
+O(κ2) .
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We find that the term ⟨ J(Φ), h (Ψ∗Ψ) ⟩ is required for gauge invariance:

S = − 1

2
⟨Ψ, QΨ ⟩ − g

3
⟨Ψ,Ψ ∗Ψ ⟩+ g2

2
⟨Ψ ∗Ψ, h (Ψ ∗Ψ) ⟩+O(g3)

+ κ

[
1

g
⟨ J(Φ),Ψ ⟩ − ⟨ J(Φ), h (Ψ ∗Ψ) ⟩+O(g)

]
+O(κ2) .

+ −→
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While the generation of nonlinear dependence of the gauge-invariant op-
erators on the open string field is what we expected, an unexpected
feature regarding the effective action is that the gauge transformation is
modified as

δΛΨ = QΛ+ gP (Ψ ∗ Λ− Λ ∗Ψ )

+ g2P [−h (Ψ ∗Ψ) ∗ Λ+ h (Ψ ∗ Λ) ∗Ψ− h (Λ ∗Ψ) ∗Ψ
−Ψ ∗ h (Ψ ∗ Λ) +Ψ ∗ h (Λ ∗Ψ) + Λ ∗ h (Ψ ∗Ψ) ] +O(g3)

+ κ

[
P [h J(Φ) ∗ Λ− Λ ∗ h J(Φ) ] +O(g)

]
+O(κ2) ,

and gauge invariance requires terms which are nonlinear with respect to
the sources.
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S = S(0)
2 + g S(0)

3 + g2 S(0)
4 +O(g3)

+ κ

[
1

g
S(1)
1 + S(1)

2 + g S(1)
3 +O(g2)

]

+ κ2

[
1

g
S(2)
1 + S(2)

2 +O(g)

]

+ κ3

[
1

g
S(3)
1 +O(g0)

]

+O(κ4) ,

δΛΨ = δ(0)0 Ψ+ g δ(0)1 Ψ+ g2δ(0)2 Ψ+O(g3)

+ κ

[
δ(1)0 Ψ+ g δ(1)1 Ψ+O(g2)

]

+ κ2

[
δ(2)0 Ψ+O(g)

]

+O(κ3) .
21



S(1)
3 = +
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There are some similarities between terms in the effective action and
terms in the gauge transformation, and we find that the effective action
and the modified gauge transformation can be written in terms of the
same set of multi-string products which satisfy weak A∞ relations.

(With hindsight, the original action including the source terms has a weak
A∞ structure in a rather trivial fashion, and the weak A∞ structure of
the effective action can be understood as being inherited from that of the
original action.)
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Weak       structureA∞



Consider an action of the form:

S = − 1

g
⟨Ψ, V0 ⟩ −

1

2
⟨Ψ, V1(Ψ) ⟩ − g

3
⟨Ψ, V2(Ψ,Ψ) ⟩

− g2

4
⟨Ψ, V3(Ψ,Ψ,Ψ) ⟩ − g3

5
⟨Ψ, V4(Ψ,Ψ,Ψ,Ψ) ⟩+O(g4) .

This action is invariant under the gauge transformation given by

δΛΨ = V1(Λ) + g (V2(Ψ,Λ)− V2(Λ,Ψ) )

+ g2 (V3(Ψ,Ψ,Λ)− V3(Ψ,Λ,Ψ) + V3(Λ,Ψ,Ψ) )

+ g3 (V4(Ψ,Ψ,Ψ,Λ)− V4(Ψ,Ψ,Λ,Ψ)

+ V4(Ψ,Λ,Ψ,Ψ)− V4(Λ,Ψ,Ψ,Ψ) ) +O(g4)

if multi-string products satisfy a set of relations called weak A∞ relations.

(In this talk all the discussions on cyclic properties are omitted.)
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Weak A∞ relations

V1(V0) = 0 ,

V1(V1(A1))− V2(V0, A1) + V2(A1, V0) = 0 ,

V1(V2(A1, A2))− V2(V1(A1), A2)− (−1)A1V2(A1, V1(A2))

+ V3(V0, A1, A2)− V3(A1, V0, A2) + V3(A1, A2, V0) = 0 ,

V1(V3(A1, A2, A3)) + V3(V1(A1), A2, A3) + (−1)A1V3(A1, V1(A2), A3)

+ (−1)A1+A2V3(A1, A2, V1(A3))− V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3))

− V4(V0, A1, A2, A3) + V4(A1, V0, A2, A3)

− V4(A1, A2, V0, A3) + V4(A1, A2, A3, V0) = 0 .

Note
V0 ̸= 0 → weak A∞ relations
V0 = 0 → A∞ relations
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For example, the term S(1)
2 in the action and δ(1)0 Ψ in the gauge transfor-

mation given by

S(1)
2 = − ⟨ J(Φ), h (Ψ ∗Ψ) ⟩ , δ(1)0 Ψ = P [h J(Φ) ∗ Λ− Λ ∗ h J(Φ) ]

can be written as

S(1)
2 = − 1

2
⟨Ψ, V (1)

1 (Ψ) ⟩ , δ(1)0 Ψ = V (1)
1 (Λ)

in terms of the one-string product V (1)
1 (A1) given by

V (1)
1 (A1) = P [h J(Φ) ∗ A1 − (−1)A1A1 ∗ h J(Φ) ] .
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An advantage of using the star product in open string field theory is that
expressions for terms in the effective action are simpler and more explicit
compared to closed string field theory.

However, expressions for terms in the effective action become rather
lengthy at higher orders even in open bosonic string field theory based
on the star product.

The weak A∞ structure provides us with analytic control over terms in
the effective action, and we present explicit expressions for the multi-
string products to all orders.

27



Coalgebra representation

To simplify the description of the weak A∞ structure, let us introduce
degree defined gy

deg(A) = ϵ(A) + 1 mod 2 ,

where ϵ(A) is the Grassmann parity of A.

Associated with the star product, we define the two-string product
m2(A1, A2) by

m2(A1, A2) = (−1)deg(A1)A1 ∗ A2 .

We also define the zero-string product w0 by

w0 = − J(Φ) .
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To describe the weak A∞ structure to all orders, it is convenient to con-
sider linear operators acting on the vector space TH defined by

TH = H⊗0 ⊕H⊕H⊗2 ⊕H⊗3 ⊕ . . . ,

where we denoted the tensor product of n copies of the Hilbert space H
by H⊗n.

The weak A∞ relations can be compactly expressed in terms of a linear
operator M on TH which squares to zero:

M2 = 0 .
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Associated with the BRST operator Q, we define Q as follows:

Q1 = 0 ,

QA1 = QA1 ,

Q (A1 ⊗ A2) = QA1 ⊗ A2 + (−1)deg(A1)A1 ⊗QA2 ,

Q (A1 ⊗ A2 ⊗ A3) = QA1 ⊗ A2 ⊗ A3 + (−1)deg(A1)A1 ⊗QA2 ⊗ A3

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗QA3 ,
...
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Associated with the two-string product m2, we define m2 as follows:

m2 1 = 0 ,

m2 A1 = 0 ,

m2 (A1 ⊗ A2) = m2(A1, A2) ,

m2 (A1 ⊗ A2 ⊗ A3) = m2(A1, A2)⊗ A3

+ (−1)deg(A1)A1 ⊗m2(A2, A3) ,

m2 (A1 ⊗ A2 ⊗ A3 ⊗ A4) = m2(A1, A2)⊗ A3 ⊗ A4

+ (−1)deg(A1)A1 ⊗m2(A2, A3)⊗ A4

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗m2(A3, A4) ,
...
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Associated with the two-string product w0, we define w0 as follows:

w0 1 = w0 ,

w0 A1 = w0 ⊗ A1 + (−1)deg(A1)A1 ⊗ w0 ,

w0 (A1 ⊗ A2) = w0 ⊗ A1 ⊗ A2 + (−1)deg(A1)A1 ⊗ w0 ⊗ A2

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗ w0 ,

w0 (A1 ⊗ A2 ⊗ A3) = w0 ⊗ A1 ⊗ A2 ⊗ A3 + (−1)deg(A1)A1 ⊗ w0 ⊗ A2 ⊗ A3

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗ w0 ⊗ A3

+ (−1)deg(A1)+deg(A2)+deg(A3)A1 ⊗ A2 ⊗ A3 ⊗ w0 ,
...
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For the action of open bosonic string field theory without introducing
the source term for the gauge-invariant operators, the A∞ structure can
be described in terms of M given by

M = Q+m2 .

For the action of open bosonic string field theory including the source
term for the gauge-invariant operators, the weak A∞ structure can be
described in terms of M given by

M = Q+m2 +w0 .
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We denote the projection operator onto T H̃ by P. The action of P is
given by

P1 = 1 ,

PA1 = PA1 ,

P (A1 ⊗ A2) = PA1 ⊗ PA2 ,

P (A1 ⊗ A2 ⊗ A3) = PA1 ⊗ PA2 ⊗ PA3 ,
...
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Associated with the propagator h, we define h as follows:

h1 = 0 ,

hA1 = hA1 ,

h (A1 ⊗ A2) = hA1 ⊗ PA2 + (−1)deg(A1)A1 ⊗ hA2 ,

h (A1 ⊗ A2 ⊗ A3) = hA1 ⊗ PA2 ⊗ PA3 + (−1)deg(A1)A1 ⊗ hA2 ⊗ PA3

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗ hA3 ,

h (A1 ⊗ A2 ⊗ A3 ⊗ A4) = hA1 ⊗ PA2 ⊗ PA3 ⊗ PA4

+ (−1)deg(A1)A1 ⊗ hA2 ⊗ PA3 ⊗ PA4

+ (−1)deg(A1)+deg(A2)A1 ⊗ A2 ⊗ hA3 ⊗ PA4

+ (−1)deg(A1)+deg(A2)+deg(A3)A1 ⊗ A2 ⊗ A3 ⊗ hA4 ,
...
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For the effective action for massless fields without introducing the source
term for the gauge-invariant operators, the A∞ structure can be described
in terms of M given by

M = PQP+Pm2
1

I+ hm2
P .

The construction was used by Matsunaga in a different context.
arXiv:1901.08555, Matsunaga

For the effective action for massless fields including the source term for
the gauge-invariant operators, the weak A∞ structure can be described
in terms of M given by

M = PQP+P (m2 +w0 )
1

I+ h (m2 +w0 )
P .
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Discussion



Our discussion is motivated by the low-energy limit in the context of
the AdS/CFT correspondence, and we are interested in the low-energy
region compared to the scale determined by α′ of the effective action for
massless fields.

After taking this low-energy limit, the theory will be invariant under the
ordinary gauge transformation.

Invariance under the ordinary gauge transformation requires familiar con-
straints, and, for example, the α′ expansion of the effective action for the
gauge field of the open string takes the form of a linear combination of
gauge-invariant terms.

However, invariance under the ordinary gauge transformation does not
constrain the coefficients in front of such gauge-invariant terms.
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On the other hand, the effective action with an A∞ structure does not
take the form of a linear combination of gauge-invariant terms, and con-
straints from invariance under the gauge transformation associated with
the A∞ structure have a more dynamical flavor.

Furthermore, the insight we learned from our analysis indicates that cor-
relation functions of gauge-invariant operators are similarly constrained
from a weak A∞ structure before strictly taking the low-energy limit.

Since the weak A∞ structure is closely related to the world-sheet picture,
we hope that the structure of correlation functions of gauge-invariant
operators dictated by the weak A∞ structure will help us reveal quantum
gravity from the open string sector.
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