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1 Many boson system with two-body fore

1.1 Original Hamiltonian and olletive variables
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Here a
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and a
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are reation and annihilation operators of bosons with momen-

tum k, respetively. 
 is the volume of the system. For simpliity we put ~ = 1

and 2m = 1. At the ground state it is expeted that almost all bosons are at zero

momentum state. In Bogoliubov's theory in 1947 a
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�(k)). Muh e�ort

has been made to treat this Hamiltonian by means of olletive variables suh

as density, phase and veloity.

1. Sunakawa, Yamasaki and Kebukawa (SYK) theory by density and velo-

ity operators.

2. Bogoliubov and Zubarev (BZ) theory (1955) by density variable.



3. Correlated basis funtion (CBF) method by Lee et al.

1.2 BZ Hamiltonian
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1.3 SYK Hamiltonian
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for n � 2.



2 Perturbation expansion of ground state energy

Zero-th term of ground state energy is the same. But for the next term BZ and

SYK is the sama but CBF give di�erent formula
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3 Lieb-Liniger equation for 1d Æ-funtion bosons
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The ground state energy per unit length in the thermodynami limit is given by

Lieb Liniger equation (1963) for the density �(k) of quasi momenta.
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The density of bosons and density of energy per unit length are given by
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This ase is 
 = L and d = 1 and �(k) = 2. One an alulate E
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analytially. Details are in my paper in 1975.[2℄



Using Bogoliubov perturbation theory Lieb-Liniger predited
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The third term is more ontroversial. I alulated the third term of u() using

Bogolieubov -Zubarev theory as
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Then I onluded that CBF method gave the orret third term(1975). Reently

Kaminaka and Wadati (2011) onluded the third term should be (
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Figure 1: The funtion u(x) determines the zero temperature properties of delta-

funtion Bose gas. Thik line is the result of numerial alulation of Lieb-

Liniger equation. Line 1 is the result of primitive perturbation. Line 2 is the

result of Bogoliubov theory up to 

3=2

. Line 3 is the perturbation result up to



2

by the author[2℄.



4 Condenser Problem of Cirular Disks

Consider the problem of two onduting irular disks with diameter 1 and the

distane of two disks is �. They are inversely harged. The harge distribution

funtions are �(r) and ��(r). Voltage di�erene is assumed to be V
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. The

equation for �(r) is
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This equation looks quite di�erent from LL equation. But if we use Abel

transformation
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This is muh earlier than Lieb-Liniger(1963).

Inverse of Abel transform is
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, two equations are ompletely the same.



Tray and Widom's analysis(2016)
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Then we have
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Using these, we have
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All logarithmi terms disappear! My result in 1975 is reprodued.



5 Next terms of weak oupling expansion

Reently Prolha did a preise numerial analysis of Lieb-Liniger equation and

obtained the following results,
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6 Conlusion

�

lim

n;L!1

E

0

L

= n

3

( �

4

3�



3=2

);

lim

n;L!1

E

2

BZ;SYK

L

= n

3



2

(

1

12

�

1

�

2

) = �0:01798785n

3



2

;

lim

n;L!1

E

2

CBF

L

= n

3



2

(

1

6

�

1

�

2

) = 0:065345483024328n

3



2

:

Then BZ theory and SYK theory failed to give the ground state energy

at the seond order. CBF method seems to give the orret seond order

energy.

� Results of ondenser problem of irular disks also support my alula-

tion

� At the present stage, systemati weak oupling expansion method for LL

equation is not known!
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