The Algebraic Construction of Integrable Hierarchies, Solitons and Backlund Transformation

Jose Francisco Gomes

Instituto de Física Teórica - IFT-Unesp

International Institute of Physics, 2018
Discuss the General structure of time evolution integrable equations associated to graded Affine Lie algebraic structure, e.g., sinh-Gordon, mKdV, etc.

Representation Theory of Infinite Dimensional Algebras and the Systematic Construction of Soliton Solutions.

Systematic Construction of Backlund Transformation for the entire Hierarchy and Integrable Defects
Start with affine Lie Algebra \hat{G}

Decompose \hat{G} into graded subspaces, e.g., $\hat{G} = \bigoplus_i G_i$, such that $[G_i, G_j] \subset G_{i+j}$.

Define constant grade 1 operator $E = E^{(1)} \in G_1$ and define $\mathcal{K} = Kernel = \{x \in \hat{G} / [x, E] = 0\}$

Decompose $G_0 = \mathcal{K} \oplus M$
Define Lax operator

\[L = \partial_x + E^{(1)} + A_0, \quad A_0 \in \mathcal{M} \subset G_0 \quad \text{Image} \]

2 - Dim. Gauge potentials

\[A_x = E + A_0, \quad A_{t_{MN}} = D^{(N)} + D^{(N-1)} + \ldots + D^{(0)} + \ldots D^{(-M)} \]

Zero Curvature Equation for Hierarchy

\[[\partial_x + E^{(1)} + A_0, \partial_{t_{MN}} + D^{(N)} + D^{(N-1)} + \ldots + D^{(0)} + \ldots D^{(-M)}] = 0 \]

\[D^{(j)} \in G_j. \]
Decompose and solve grade by grade, i.e.,

\[
\begin{align*}
[E^{(1)}, D^{(N)}] &= 0, \\
[E^{(1)}, D^{(N-1)}] + [A_0, D^{(N)}] + \partial_x D^{(N)} &= 0, \\
&\vdots \\
[E^{(1)}, D^{(-1)}] + [A_0, D^{(0)}] + \partial_x D^{(0)} - \partial_{t_{MN}} A_0 &= 0, \\
&\vdots \\
[A_0, D^{(-M)}] + \partial_x D^{(-M)} &= 0,
\end{align*}
\]

Solving recursively for \(D^{(i)}\) we get the eqn. of motion

\[
\partial_{t_{MN}} A_0 - \partial_x D^{(0)} - [A_0, D^{(0)}] - [E^{(1)}, D^{(-1)}] = 0,
\]
Example: The mKdV Hierarchy

- Choose $G = \mathfrak{sl}(2)$ with generators $\{h, E_{\pm \alpha}\}$

- Grading operator Q, e.g. $Q = 2\lambda \frac{d}{d\lambda} + \frac{1}{2}h$

- *semi-simple* element $E = E^{(1)} = E_{\alpha} + \lambda E_{-\alpha}$

- Decomposition of Affine Lie Algebra into graded subspaces,

 \[G_{2m} = \{ h^{(m)} = \lambda^m h \}, \]
 \[G_{2m+1} = \{ \lambda^m (E_{\alpha} + \lambda E_{-\alpha}), \lambda^m (E_{\alpha} - \lambda E_{-\alpha}) \} \]

 \(m = 0, \pm 1, \pm 2, \ldots \) where $[G_i, G_j] \subset G_{i+j}$.
For $M = 0$, Zero Curvature can be decomposed and solved grade by grade, i.e.,

\[
\begin{align*}
[E^{(1)}, D^{(N)}] &= 0, \\
[E^{(1)}, D^{(N-1)}] + [A_0, D^{(N)}] + \partial_x D^{(N)} &= 0, \\
&\quad \vdots \\
[A_0, D^{(0)}] + \partial_x D^{(0)} - \partial_t N A_0 &= 0,
\end{align*}
\]

In particular, highest grade component, i.e.,

\[
[E^{(1)}, D^{(N)}] = 0,
\]

implies $D^{(N)} = E^{(N)} \in \mathcal{K}_{2n+1}$ is const. and therefore $N = 2n + 1$.

Solving recursively for $D^{(i)}$ we get the eqn. of motion

\[
\partial_t N A_0 - \partial_x D^{(0)} - [A_0, D^{(0)}] = 0,
\]
Positive mKdV Hierarchy

Examples: $A_0 = v(x, t_N) h$,

$N = 3,$

$$4 \partial_{t_3} v = v_{3x} - 6v^2 v_x, \quad mKdV$$

$N = 5,$

$$16 \partial_{t_5} v = v_{5x} - 10v^2 v_{3x} - 40v v_x v_{2x} - 10v_x^3 + 30v^4 v_x,$$

$N = 7,$

$$64 \partial_{t_7} v = v_{7x} - 182v_x v_{2x}^2 - 126 v_x^2 v_{3x} - 140v v_{2x} v_{3x}$$

$$- 84v v_x v_{4x} - 14v^2 v_{5x} + 420 v^2 v_{3x} + 560 v^3 v_x v_{2x}$$

$$+ 70v^4 v_{3x} - 140v^6 v_x$$

\cdots etc
Remark

- Vacuum Solution is $\nu = \text{const} = 0$
- Zero curvature for vacuum solution becomes
 \[
 [\partial_x + E^{(1)}, \partial_{tN} + E^{(N)}] = 0, \quad [E^{(1)}, E^{(N)}] = 0
 \]
 and imply pure gauge potentials, i.e.,
 \[
 A_{x,\text{vac}} = E^{(1)} = T_0^{-1} \partial_x T_0, \quad A_{tN,\text{vac}} = E^{(N)} = T_0^{-1} \partial_{tN} T_0
 \]
- Where
 \[
 T_0 = e^{x E^{(1)}} e^{tN E^{(N)}}
 \]
Zero Curvature Equation for \textit{Negative Hierarchy}

\[\partial_x + E^{(1)} + A_0, \partial_{t_n} + D(-n) + D(-n+1) + \ldots + D(-1) = 0. \]

Lowest grade projection,

\[\partial_x D(-n) + [A_0, D(-n)] = 0 \]

yields a nonlocal equation for \(D(-n) \). \textbf{No condition upon} \(n \).
The second lowest projection of grade $-n + 1$ leads to
\[\partial_x D^{(-n+1)} + [A_0, D^{(-n+1)}] + [E^{(1)}, D^{(-n)}] = 0 \]
and determines $D^{(-n+1)}$.

The same mechanism works recursively until we reach the zero grade equation
\[\partial_{t_{-n}} A_0 + [E^{(1)}, D^{(-1)}] = 0 \]
which gives the *time evolution* for the field in A_0 according to time t_{-n}.
Simplest Example $t_{-n} = t_{-1}$.

\[\partial_x D^{(-1)} + [A_0, D^{(-1)}] = 0, \]

(1)

\[\partial_{t_{-1}} A_0 - [E^{(1)}, D^{(-1)}] = 0. \]

Compact Solution is

\[D^{(-1)} = B^{-1} E^{(-1)} B, \quad A_0 = B^{-1} \partial_x B, \quad B = \exp(G_0) \]

The time evolution is then given by the Leznov-Saveliev equation,

\[\partial_{t_{-1}} \left(B^{-1} \partial_x B \right) = [E^{(1)}, B^{-1} E^{(-1)} B] \]
For $\hat{sl}(2)$ with principal gradation $Q = 2\lambda \frac{d}{d\lambda} + \frac{1}{2}h$, yields the sinh-Gordon equation (relativistic)

$$\partial_{t_{-1}} \partial_x \phi = e^{2\phi} - e^{-2\phi}, \quad B = e^{\phi h}.$$

where $t_{-1} = z$, $x = \bar{z}$, $A_0 = vh = \partial_x \phi h$.

No restriction for Negative even Hierarchy
Next simplest example $t = t_{-2}$

\[
\partial_x D^{(-2)} + [A_0, D^{(-2)}] = 0,
\]
\[
\partial_x D^{(-1)} + [A_0, D^{(-1)}] + [E^{(1)}, D^{(-2)}] = 0,
\]
\[
\partial_{t_{-2}} A_0 - [E^{(1)}, D^{(-1)}] = 0.
\]

Propose solution of the form

\[
D^{(-2)} = c_{-2} \lambda^{-1} h,
\]
\[
D^{(-1)} = a_{-1} \left(\lambda^{-1} E_{\alpha} + E_{-\alpha} \right) + b_{-1} \left(\lambda^{-1} E_{\alpha} - E_{-\alpha} \right).
\]
Get $c_{-2} = \text{const}$ and

\[
\begin{align*}
 a_{-1} + b_{-1} &= 2c_{-2} \exp(-2d^{-1}v)d^{-1} \left(\exp(2d^{-1}v)\right), \\
 a_{-1} - b_{-1} &= -2c_{-2} \exp(2d^{-1}v)d^{-1} \left(\exp(-2d^{-1}v)\right),
\end{align*}
\]

where $A_0 = vh = \partial_x \phi h$ and $d^{-1}v = \int^x v(x')dx' = \phi$.

The Algebraic Construction of Integrable Hierarchies, Solitons and Backlund Transformations
Equation of motion is (integral eqn.)

$$\partial_{t_{−2}} \nu = -2c_{−2} e^{-2d^{-1} \nu} d^{-1} \left(e^{2d^{-1} \nu} \right) - 2c_{−2} e^{2d^{-1} \nu} d^{-1} \left(e^{-2d^{-1} \nu} \right)$$

where $d^{-1} \nu = \int^x \nu(x') dx' = \phi$.
Constant Vacuum for $t = t_{-2}$ equation

1) Let $v = 0$, $d^{-1}0 = \alpha = \text{const}$

$$0 + 2c_{-2}e^{-2\alpha} \int e^{2\alpha} + 2c_{-2}e^{2\alpha} \int e^{-2\alpha} \neq 0,$$

for $c_{-2} \neq 0$.

2) $v = v_0$, $d^{-1}v_0 = v_0 x$

$$0 + 2c_{-2}e^{-2v_0 x} \int e^{2v_0 x} + 2c_{-2}e^{2v_0 x} \int e^{-2v_0 x} = 0$$

Notice that, for $c_{-2} \neq 0$, $v = 0$ is not solution of the evolution equation and therefore $A_0 = 0$ does not satisfy the zero curvature representation for $t = t_{-2}$.
The **Soliton solutions** are constructed from the vacuum solution by **gauge transformation** (which preserves the zero curvature condition), i.e.,

\[A_\mu = \Theta^{-1} A_{\mu, vac} \Theta + \Theta^{-1} \partial_\mu \Theta, \]

where

\[A_\mu = T^{-1} \partial_\mu T, \quad T = T_0 \Theta, \quad A_{\mu, vac} = T_0^{-1} \partial_\mu T_0 \]

we may choose \(\Theta = \Theta_+ = e^{\theta_0} e^{\theta_1} \cdots \) or \(\Theta = \Theta_- = e^{\theta_{-1}} e^{\theta_{-2}} \cdots \), \(\theta_i \in G_i \).
It then follows that \(T = \Theta_+ T_0 = \Theta_- T_0 g, \)

\[
\Theta_-^\dagger \Theta_+ = T_0^{-1} g T_0,
\quad e^{\theta_0} = B e^{\nu \hat{c}}
\]

In order to introduce highest weight states \(|\lambda_i >, i = 0, 1, \) need to extended the loop to the fully **central extended** Kac-Moody algebra

\[
[h^{(m)}, h^{(n)}] = \hat{c} m \delta_{m+n,0}
\]

\[
[h^{(m)}, E^{(n)}_{\pm \alpha}] = \pm 2 E^{(n+m)}_{\pm \alpha},
\quad [E^{(m)}_{\alpha}, E^{(n)}_{-\alpha}] = h^{(m+n)} + \hat{c} m \delta_{m+n,0},
\]

and introduce \(\nu \) field associated to \(\hat{c}, \) i.e.,

\(B \rightarrow B e^{\nu \hat{c}}, \quad A_0 \rightarrow A_0 + \partial_x \nu \hat{c} \)

such that

\[
< \lambda | B e^{\nu \hat{c}} | \lambda > = < \lambda | T_0^{-1} g T_0 | \lambda > .
\]
The solution for mKdV hierarchy is then given by

\[e^{-\nu} = \langle \lambda_0 | T_0^{-1} g T_0 | \lambda_0 \rangle \equiv \tau_0, \]
\[e^{-\phi-\nu} = \langle \lambda_1 | T_0^{-1} g T_0 | \lambda_1 \rangle \equiv \tau_1 \]

and hence, \(\nu = -\partial_x \ln \left(\frac{\tau_0}{\tau_1} \right) \), \(\nu = \partial_x \phi \)

where \(T_0 = e^{xA_{x,vac}} e^{tMA_{tM,vac}} \), \(g = e^{F(\gamma)} \).

Taking \(F(\gamma) \) is an eigenvector (vertex operator) of \(E^{(M)} = A_{tM,vac} \) and \(E^{(1)} = A_{x,vac} \), i.e.,

\[[E^{(M)}, F(\gamma)] = w_M(\gamma) F(\gamma) . \]

it follows that

\[T_0^{-1} e^{F(\gamma)} T_0 = e^{\rho(x,t_N;\gamma) F(\gamma)}, \quad \rho(x, t_N; \gamma) = e^{xw_1 + t_N w_N}, \]
We find that the one-soliton solution of the form,

\[
\tau_0 = 1 + C_0 \rho (\gamma, v_0), \quad \tau_1 = 1 + C_1 \rho (\gamma, v_0)
\]

solves all eqns. within the positive mKdV hierarchy for \(w_1 = 2\gamma, \quad w_N = 2\gamma^N \), i.e.,

\[
v = -\partial_x \ln \left(\frac{1 + C_1 \rho}{1 + C_0 \rho} \right).
\]

where

\[
\rho (\gamma, v_0) = \exp \left\{ 2\gamma x + 2\gamma^N t_N \right\}.
\]
The same works for multi-soliton solutions, ie., \(g = \Pi e^{F_i(\gamma_i)} \).

\[T_0^{-1} \Pi e^{F_i(\gamma_i)} T_0 = \Pi e^{\rho_i(x, t_N; \gamma_i) F_i(\gamma_i)} \]

\(\rho_i(x, t_N) = e^{2\gamma_i x + 2\gamma_i^N t_N} \).

For negative hierarchy \(^2\) and constant vacuum solution

\(\nu = \nu_0 - \partial_x \ln \left(\frac{1 + C_1 \rho}{1 + C_0 \rho} \right) \).

\[\rho(\gamma, \nu_0) = \exp \left\{ 2\gamma x + \frac{2\gamma t - m}{\nu_0 (\gamma^2 - \nu_0^2)^{m/2}} \right\} \]

\(^2\) JFG, G Starvaggi França, G R de Melo and A H Zimerman, J. of Phys. A42,(2009), 445204
Gauge-Backlund Transformation for Sinh-Gordon

Assume now that two field configurations ϕ_1 and ϕ_2 embedded in $A_{x,mKdV}(\phi_1)$ and $A_{x,mKdV}(\phi_2)$ are related by a Backlund gauge transformation, i.e.,

$$K(\phi_1, \phi_2) A_{x,mKdV}(\phi_1) = A_{x,mKdV}(\phi_2) K(\phi_1, \phi_2) + \partial_x K(\phi_1, \phi_2),$$

holds for

$$K(\phi_1, \phi_2) = \begin{bmatrix} 1 & -\frac{\beta}{2\lambda} e^{-(\phi_1 + \phi_2)} \\ -\frac{\beta}{2} e^{(\phi_1 + \phi_2)} & 1 \end{bmatrix}$$

provided Backlund transformation is satisfied, i.e.,

$$\partial_x (\phi_1 - \phi_2) = -\beta \sinh (\phi_1 + \phi_2), \quad \nu_i \equiv \partial_x \phi_i.$$
For the sinh-Gordon, the equations of motion
\[\partial_{t-1} \partial_x \phi_a = 2 \sinh 2 \phi_a, \quad a = 1, 2 \]
we introduce the time component of the Bäcklund transformation,
\[\partial_{t-1} (\phi_1 + \phi_2) = \frac{4}{\beta} \sinh (\phi_2 - \phi_1). \] (3)
For higher graded time evolutions the time component of the Backlund transformation can be derived from the appropriated time component of the two dimensional gauge potential.\(^3\) e.g.,

\[K(\phi_1, \phi_2) A_{t_N, mKdV}(\phi_1) = A_{t_N, mKdV}(\phi_2) K(\phi_1, \phi_2) + \partial_{t_N} K(\phi_1, \phi_2), \]

which for \(t = t_3 \) leads to

\[
\partial_{t_3} \phi_2 \quad - \quad \partial_{t_3} \phi_1 = \frac{\beta}{4} (\partial_x^2 \phi_1 + \partial_x^2 \phi_2) \cosh(\phi_1 + \phi_2) \\
- \quad \frac{\beta}{8} (\partial_x \phi_1 + \partial_x \phi_2)^2 \sinh(\phi_1 + \phi_2) - \frac{\beta^3}{8} \sinh^3(\phi_1 + \phi_2).
\]

Consider now

\[g_1 = \begin{pmatrix} \zeta & 1 \\ \zeta & -1 \end{pmatrix}, \quad g_2(v, \epsilon) = \begin{pmatrix} 1 & \epsilon \\ -\epsilon v & -v + 2\epsilon \zeta \end{pmatrix}, \quad \zeta^2 = \lambda, \]

which transforms

\[A_{x,mKdV} = E^{(1)} + v(x, t_N) h = \begin{pmatrix} v & 1 \\ \lambda & -v \end{pmatrix}, \]

into

\[A_{x,KdV} = g_2 g_1 (A_{x,mKdV}) g_1^{-1} g_2^{-1} - \partial_x g_2 g_2^{-1} = \begin{pmatrix} \zeta & -1 \\ J & -\zeta \end{pmatrix} \]

where \(J = \epsilon \partial_x v - v^2, \quad \epsilon^2 = 1. \)
Following the same line of reasoning propose now

\[\tilde{K}(J_1, J_2)A_{\mu,KdV}(J_1) = A_{\mu,KdV}(J_2)\tilde{K}(J_1, J_2) + \partial_{\mu}\tilde{K}(J_1, J_2), \]

which can be constructed from \(K \), i.e.,

\[\tilde{K} = g_2(v_2, \epsilon_2) \left(g_1 K(\phi_1, \phi_2)g_1^{-1} \right) g_2(v_1, \epsilon_1)^{-1} \]

and depend upon \(\epsilon_1, \epsilon_2 \).
For $\epsilon_1 = -\epsilon_2 = \epsilon$ we found

$$\tilde{K}(J_1, J_2, \beta) = -\frac{1}{\zeta} \begin{pmatrix} -\zeta + \frac{1}{2}Q & 1 \\ -\frac{\beta^2}{4} + \frac{1}{4}Q^2 & \zeta + \frac{1}{2}Q \end{pmatrix},$$

where

$$Q = \epsilon(v_1 + v_2) + \frac{\beta}{2}(e^{\phi_1+\phi_2} + e^{-(\phi_1+\phi_2)}) = w_1 - w_2$$

and $J_i = \partial_x w_i$, $i = 1, 2^4$ which generates to the Backlund transformation for the KdV hierarchy

$$J_1 + J_2 = \partial_x P = \frac{\beta^2}{2} - \frac{(w_1 - w_2)^2}{2}, \quad P = w_1 + w_2.$$
Affine Algebraic structure, i.e., \hat{G}, Q, $E^{(n)}$ provide a systematic method in deriving integrable nonlinear equations,\textit{ Integrable Hierarchies}.

Provide the construction and classification of Soliton Solutions via \textit{Dressing Method}.

How to adapt Dressing method to construct \textit{periodic solutions} (Jacobi Theta functions). where

$$\tau_a = \sum_{k=-\infty}^{+\infty} e^{2\pi i \eta k^2} \rho^k, \quad \eta = \text{deform. parameter}$$

c.f. soliton where

$$\tau_0 = 1 + \rho, \quad \tau_1 = 1 - \rho$$

Provide the Systematic construction of \textit{Backlund Transformation} for higher members of same hierarchy.