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Introduction 1

Quantum entanglement

I Most surprising feature of quantum mechanics,
No analog in classical mechanics

I Crucial to quantum computation

I From pure state of the full system S : ρ = |ψ〉〈ψ|, reduced
density matrix of a subsystem A: ρA = TrS−A ρ can become
mixed states, and has nonzero entanglement entropy

SA = −TrA [ρA ln ρA] .

This is purely a quantum property.
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Introduction 2

Area law of entanglement entropy

I Ground states of quantum many-body systems (with local
interactions) typically exhibit the area law behavior of the
entanglement entropy: SA ∝ (area of A)

I Gapped systems in 1D are proven to obey the area law.
[Hastings 2007]

I For gapless case, (1 + 1)-dimensional CFT violates
logarithmically: SA = c

3 ln (volume of A).
[Holzhey, Larsen, Wilczek 1994], [Korepin 2004], [Calabrese, Cardy 2009]

I Recently, 1D solvable spin chain models which exhibit
extensive entanglement entropy have been discussed.

I Beyond logarithmic violation: SA ∝
√

(volume of A)
Motzkin model (Shor-Movassagh model) [Movassagh, Shor 2014]

Fredkin model [Salberger, Korepin 2016]
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Introduction 3

Rényi entropy [Rényi, 1970]

I Rényi entropy has further importance than the von Neumann
entanglement entropy:

SA, α =
1

1− α
lnTrA ρ

α
A with α > 0 and α 6= 1.

I Generalization of the von Neumann entanglement entropy:
limα→1 SA, α = SA

I Reconstructs the whole spectrum of the entanglement
Hamiltonian Hent,A ≡ − ln ρA.

I For SA, α (0 < α < 1), the gapped systems in 1D is proven to
obey the area law. [Huang, 2015]

In this lecture, I give a review of Motzkin spin chain and
analytically compute its Rényi entropy of half-chain.

New phase transition found at α = 1!
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Motzkin spin model 1 [Bravyi et al 2012]

I 1D spin chain at sites i ∈ S ≡ {1, 2, · · · , 2n}
I Spin-1 state at each site can be regarded as up, down and flat

steps;
|u〉 ⇔ , |d〉 ⇔ , |0〉 ⇔

I Each spin configuration ⇔ length-2n walk in (x , y) plane
Example)

y

x|u〉1 |0〉2 |d〉3 |u〉4 |u〉5 |d〉6
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Motzkin spin model 2 [Bravyi et al 2012]

Hamiltonian: HMotzkin = Hbulk + Hbdy

I Bulk part: Hbulk =
∑2n−1

j=1 Πj ,j+1,

Πj ,j+1 = |D〉j ,j+1〈D|+ |U〉j ,j+1〈U|+ |F 〉j ,j+1〈F |

(local interactions) with

|D〉 ≡ 1√
2

(|0, d〉 − |d , 0〉) ,

|U〉 ≡ 1√
2

(|0, u〉 − |u, 0〉) ,

|F 〉 ≡ 1√
2

(|0, 0〉 − |u, d〉) .

⇔ ∼

⇔ ∼

⇔ ∼
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Motzkin spin model 3 [Bravyi et al 2012]

Hamiltonian: HMotzkin = Hbulk + Hbdy

I Boundary part: Hbdy = |d〉1〈d |+ |u〉2n〈u|

⇓

I HMotzkin is the sum of projection operators.
⇒ Positive semi-definite spectrum

I We find the unique zero-energy ground state.
I Each projector in HMotzkin annihilates the ground state.

⇒ Frustration free

I The ground state corresponds to randoms walks starting at
(0, 0) and ending at (2n, 0) restricted to the region y ≥ 0
(Motzkin Walks (MWs)).
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Motzkin spin model 4 [Bravyi et al 2012]

In terms of S = 1 spin matrices

Sz =

1
0
−1

 , S± ≡
1√
2

(Sx±iSy ) =

 1
1

 ,

1
1

 ,

Hbulk =
1

2

2n−1∑
j=1

[
1j1j+1 −

1

4
Sz jSz j+1 −

1

4
S2
z jSz j+1 +

1

4
Sz jS

2
z j+1

−3

4
S2
z jS

2
z j+1 + S+ j (SzS−)j+1 + S− j (S+Sz)j+1 − (S−Sz)j S+ j+1

− (SzS+)j S− j+1− (S−Sz)j (S+Sz)j+1 − (SzS+)j (SzS−)j+1

]
,

Hbdy =
1

2

(
S2
z − Sz

)
1

+
1

2

(
S2
z + Sz

)
2n

Quartic spin interactions



Motzkin spin model 5 [Bravyi et al 2012]

Example) 2n = 4 case,
MWs:

+ + +

+ + + +

+

m

Ground state:

|P4〉 =
1√
9

[|0000〉+ |ud00〉+ |0ud0〉+ |00ud〉

+|u0d0〉+ |0u0d〉+ |u00d〉+ |udud〉
+|uudd〉] .



Motzkin spin model 6 [Bravyi et al 2012]

Note
Forbidden paths for the ground state

1. Path entering y < 0 region

∼

Forbidden by Hbdy

2. Path ending at nonzero height

∼ ∼ ∼

Forbidden by Hbdy



Motzkin spin model 7 [Bravyi et al 2012]

Entanglement entropy of a subsystem A = {1, 2, · · · , n}:
I Normalization factor of the ground state |P2n〉 is given by

the number of MWs of length 2n: M2n =
∑n

k=0 Ck

(
2n
2k

)
.

Ck = 1
k+1

(
2k
k

)
: Catalan number

I Consider to trace out the density matrix ρ = |P2n〉〈P2n| w.r.t.
the complement subsystem B = S − A = {n + 1, · · · , 2n}.
Schmidt decomposition:

|P2n〉 =
∑
h≥0

√
p

(h)
n,n

∣∣∣P(0→h)
n

〉
⊗
∣∣∣P(h→0)

n

〉

with p
(h)
n,n ≡

(
M

(h)
n

)2

M2n
. ↑

Paths from (0, 0) to (n, h)
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Motzkin spin model 8 [Bravyi et al 2012]

I M
(h)
n is the number of paths in P

(0→h)
n .

For n→∞, Gaussian distribution

p
(h)
n,n ∼

3
√

6√
π

(h + 1)2

n3/2
e−

3
2

(h+1)2

n × [1 + O(1/n)] .

I Reduced density matrix

ρA = TrB ρ =
∑
h≥0

p
(h)
n,n

∣∣∣P(0→h)
n

〉〈
P

(0→h)
n

∣∣∣
I Entanglement entropy

SA = −
∑
h≥0

p
(h)
n,n ln p

(h)
n,n

=
1

2
ln n +

1

2
ln

2π

3
+ γ − 1

2
(γ: Euler constant)

up to terms vanishing as n→∞.



Motzkin spin model 9 [Bravyi et al 2012]

Notes

I The system is critical (gapless).
SA is similar to the (1 + 1)-dimensional CFT with c = 3/2.

I But, gap scales as O(1/nz) with z ≥ 2.
The system cannot be described by relativistic CFT.

I Correlation functions [Movassagh 2017]

〈Sz j〉 ∼
2√
3π

1− j/n

j(1− j/(2n))
, 〈Sx j〉 = 〈Sy j〉 = 〈Sz jSz k〉 = 0

I Excitations have not been much investigated.
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Colored Motzkin spin model 1 [Movassagh, Shor 2014]

I Introducing color d.o.f. k = 1, 2, · · · , s to up and down spins
as ∣∣∣uk〉⇔ k

,
∣∣∣dk
〉
⇔

k
, |0〉 ⇔

Color d.o.f. decorated to Motzkin Walks

I Hamiltonian HcMotzkin = Hbulk + Hbdy

I Bulk part consisting of local interactions:

Hbulk =
2n−1∑
j=1

(
Πj,j+1 + Πcross

j,j+1

)
,

Πj,j+1 =
s∑

k=1

[∣∣Dk
〉
j,j+1

〈
Dk
∣∣+
∣∣Uk
〉
j,j+1

〈
Uk
∣∣+
∣∣F k
〉
j,j+1

〈
F k
∣∣]

with
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Colored Motzkin spin model 2 [Movassagh, Shor 2014]

∣∣∣Dk
〉
≡ 1√

2

(∣∣∣0, dk
〉
−
∣∣∣dk , 0

〉)
,∣∣∣Uk

〉
≡ 1√

2

(∣∣∣0, uk〉− ∣∣∣uk , 0
〉)

,∣∣∣F k
〉
≡ 1√

2

(
|0, 0〉 −

∣∣∣uk , dk
〉)

,

and
Πcross
j ,j+1 =

∑
k 6=k ′

∣∣∣uk , dk ′
〉
j ,j+1

〈
uk , dk ′

∣∣∣.
⇒ Colors should be matched in up and down pairs.

I Boundary part

Hbdy =
s∑

k=1

(∣∣∣dk
〉

1

〈
dk
∣∣∣+
∣∣∣uk〉

2n

〈
uk
∣∣∣) .



Colored Motzkin spin model 3 [Movassagh, Shor 2014]

I Still unique ground state with zero energy

I Example) 2n = 4 case,

+
k k

+
k k

+
k k

+
k k

+
k k

+
k k

+
k k k ′ k ′

+
k

k ′ k ′

k

|P4〉 =
1√

1 + 6s + 2s2

[
|0000〉+

s∑
k=1

{∣∣∣ukdk00
〉

+ · · ·+
∣∣∣uk00dk

〉}
+

s∑
k,k ′=1

{∣∣∣ukdkuk
′
dk ′
〉

+
∣∣∣ukuk ′dk ′dk

〉}]
.
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Colored Motzkin spin model 4 [Movassagh, Shor 2014]

Entanglement entropy

I Paths from (0, 0) to (n, h), P
(0→h)
n , have h unmatched up

steps.

Let P̃
(0→h)
n ({κ}) be paths with the colors of unmatched up

steps frozen.
(unmatched up from height (m − 1) to m) → uκm

I Similarly,

P
(h→0)
n → P̃

(h→0)
n ({κ}),

(unmatched down from height m to (m − 1))→ dκm .

I The numbers satisfy M
(h)
n = sh M̃

(h)
n .



Colored Motzkin spin model 5 [Movassagh, Shor 2014]

Example

2n = 8 case, h = 2

x

y

0
1 2 3 4 5 6 7 8

1

2

3

k k

k ′ k ′

uκ1 dκ1

uκ2 dκ2

A B



Colored Motzkin spin model 6 [Movassagh, Shor 2014]

I Schmidt decomposition

|P2n〉 =
∑
h≥0

s∑
κ1=1

· · ·
s∑

κh=1

√
p

(h)
n,n

×
∣∣∣P̃(0→h)

n ({κ})
〉
⊗
∣∣∣P̃(h→0)

n ({κ})
〉

with

p
(h)
n,n =

(
M̃

(h)
n

)2

M2n
.

I Reduced density matrix

ρA =
∑
h≥0

s∑
κ1=1

· · ·
s∑

κh=1

p
(h)
n,n

×
∣∣∣P̃(0→h)

n ({κ})
〉〈

P̃
(0→h)
n ({κ})

∣∣∣.



Colored Motzkin spin model 7 [Movassagh, Shor 2014]

I For n→∞,

p
(h)
n,n ∼

√
2 s−h

√
π (σn)3/2

(h + 1)2 e−
(h+1)2

2σn × [1 + O(1/n)]

with σ ≡
√
s

2
√
s+1

. Note: Effectively h . O(
√
n).

I Entanglement entropy ↙

SA = −
∑
h≥0

sh p
(h)
n,n ln p

(h)
n,n

= (2 ln s)

√
2σn

π
+

1

2
ln n +

1

2
ln(2πσ) + γ − 1

2
− ln s

up to terms vanishing as n→∞. Grows as
√
n.



Colored Motzkin spin model 7 [Movassagh, Shor 2014]

I For n→∞,

p
(h)
n,n ∼

√
2 s−h

√
π (σn)3/2

(h + 1)2 e−
(h+1)2

2σn × [1 + O(1/n)]

with σ ≡
√
s

2
√
s+1

. Note: Effectively h . O(
√
n).

I Entanglement entropy ↙

SA = −
∑
h≥0

sh p
(h)
n,n ln p

(h)
n,n

= (2 ln s)

√
2σn

π
+

1

2
ln n +

1

2
ln(2πσ) + γ − 1

2
− ln s

up to terms vanishing as n→∞. Grows as
√
n.



Colored Motzkin spin model 8 [Movassagh, Shor 2014]

Comments

I
Matching color ⇒ s−h factor in p

(h)
n,n

⇒ crucial to O(
√
n) behavior in SA

I For spin 1/2 chain (only up and down), the model in which
similar behavior exhibits in colored as well as uncolored cases
has been constructed. (Fredkin model) [Salberger, Korepin 2016]

I Correlation functions [Dell’Anna et al, 2016]

〈Sz, 1Sz, 2n〉connected → −0.034...× s3 − s

6
6= 0 (n→∞)

⇒ Violation of cluster decomposition property for s > 1
(Strong correlation due to color matching)

I Deformation of models to achieve the volume law behavior
(SA ∝ n)
Weighted Motzkin/Dyck walks [Zhang et al, Salberger et al 2016]
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Réyni entropy 1 [F.S., Korepin, 2018]

I What we compute is the asymptotic behavior of

SA, α =
1

1− α
ln

n∑
h=0

sh
(
p

(h)
n,n

)α
.

I For colorless case (s = 1), we obtain

SA,α =
1

2
ln n +

1

1− α
ln Γ

(
α +

1

2

)
− 1

2(1− α)

{
(1 + 2α) lnα + α ln

π

24
+ ln 6

}
up to terms vanishing as n→∞.

I Logarithmic growth
I Reduces to SA in the α→ 1 limit.
I Consistent with half-chain case in the result in [Movassagh, 2017]
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Réyni entropy 2 [F.S., Korepin, 2018]

Colored case (s > 1)

I Before we saw

p
(h)
n,n ∼

√
2 s−h

√
π (σn)3/2

(h + 1)2 e−
(h+1)2

2σn × [1 + O(1/n)]

with σ ≡
√
s

2
√
s+1

. Note: Valid for h ≤ O(
√
n).

I The summand sh
(
p

(h)
n,n

)α
has a factor s(1−α)h.

For 0 < α < 1, exponentially growing (colored case (s > 1)).
⇒ Saddle point value of the sum: h∗ = O(n)

We need more careful treatment of asymptotics of p
(h)
n,n.
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Réyni entropy 3 [F.S., Korepin, 2018]

Asymptotics of p
(h)
n,n

I Let us go back to the original expression

p
(h)
n,n =

(
M̃

(h)
n

)2

M2n
,

where

M̃
(h)
n = (h + 1)

n−h∑
ρ=0

1 + (−1)n−ρ+h

2
Cn,h,ρ,

Cn,h,ρ =
n! s(n−ρ+h)/2

ρ!
(
n−ρ−h

2

)
!
(
n−ρ+h

2 + 1
)

!

M2n = (h = 0 and n→ 2n in the above)



Réyni entropy 4 [F.S., Korepin, 2018]

I For n, ρ, n − ρ± h� 1, the sum can be evaluated by the
saddle point method as

p
(h)
n,n '

s−h
√
π s1/4

(2n)3/2(
2
√
s + 1

)2n+ 3
2

n2n+1

ρ2n+3
0

× (h + 1)2

[4sn2 − (4s − 1)h2]1/2

(
n − ρ0 − h

n − ρ0 + h

)h+1

×
[
1 + O(n−1)

]
, (1)

where the saddle point value of ρ is ρ0 + O(n0) with

ρ0 ≡
n

4s − 1

[
−1 +

√
4s − (4s − 1)

h2

n2

]
.



Réyni entropy 5 [F.S., Korepin, 2018]

I When h ≤ O(
√
n), the expression reduces to

p
(h)
n,n '

√
2 s−h

√
π (σn)3/2

(h + 1)2 e−
(h+1)2

2σn × [1 + O(1/n)] (2)

Note: (
n

ρ0

)2n

=
(
2
√
s + 1

)2n
e

2
√

s+1
2
√

s
h2

n ×
[
1 + O(n−1)

]
,(

n − ρ0 − h

n − ρ0 + h

)h+1

= e
− 2
√
s+1√
s

h(h+1)
n ×

[
1 + O(n−1)

]
.



Réyni entropy 6 [F.S., Korepin, 2018]

Rényi entropy for 0 < α < 1

I Compute SA, α = 1
1−α ln

∑n
h=0 s

h
(
p

(h)
n,n

)α
with use of (1).

I Saddle point analysis for the sum leads to

SA,α = n
2α

1− α
ln
[
σ
(
s

1−α
2α + s−

1−α
2α + s−1/2

)]
+

1 + α

2(1− α)
ln n + C (s, α)

with C (s, α) being n-independent terms.

I The saddle point value is h∗ = n s
1

2α −s1− 1
2α

s
1

2α +s1− 1
2α +1

+ O(n0).

I Linear growth in n.
I Some universal meaning of the subleading ln n term.

(Identical with the Fredkin case)
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Réyni entropy 7 [F.S., Korepin, 2018]

I Explicit form of C (s, α):

C (s, α) ≡ 1

2
lnπ − 1

1− α
ln
(
s
√
α
)

+
1

2(1− α)
ln
(
s

1
2α + s1− 1

2α + 4s
)

+
3α

2(1− α)
ln(2σ) +

3α− 1

1− α
ln
(
s

1
2α + s1− 1

2α + 1
)

− α

2(1− α)
ln

1 + 4

(
2s

1
2α + 1

) (
2s1− 1

2α + 1
)

(
s

1−α
2α − s−

1−α
2α

)2

 .
I Singular term at α = 0: − 1

2(1−α) lnα

(Identical with the colorless case)

I Note: α→ 1 or s → 1 limit does not commute with the
n→∞ limit.
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Réyni entropy 8 [F.S., Korepin, 2018]

Rényi entropy for α > 1

I For α > 1, the factor s(1−α)h in the summand sh
(
p

(h)
n,n

)α
exponentially decays.

⇒ h . O
(

1
(α−1) ln s

)
= O(n0) dominantly contributes to the

sum.

I Compute SA, α = 1
1−α ln

∑n
h=0 s

h
(
p

(h)
n,n

)α
with use of (2).

I Further simplification: e−
α

2σn
(h+1)2

= 1 + O(n−1)
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Réyni entropy 9 [F.S., Korepin, 2018]

I The result is expressed in terms of Lerch transcendent
Φ(z , g , a) =

∑∞
k=0

zk

(k+a)g as

SA, α =
3α

2(α− 1)
ln n − ln s +

3α

2(α− 1)
lnσ +

α

2(α− 1)
ln
π

2

− 1

α− 1
ln Φ

(
s−(α−1),−2α, 0

)
up to terms vanishing as n→∞.

I Logarithmic growth (Identical term with the Fredkin case)
I α→ 1 or s → 1 limit does not commute with the n→∞ limit.
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Réyni entropy 10 [F.S., Korepin, 2018]

Phase transition

I SAα grows as O(n) for 0 < α < 1 while as O(ln n) for α > 1.

⇒ Non-analytic behavior at α = 1 (Phase transition)
I In terms of the entanglement Hamiltonian,

TrA ρ
α
A = TrA e−αHent, A α: “inverse temperature”

I 0 < α < 1: “high temperature”
(Height of dominant paths h = O(n))

I α > 1: “low temperature”
(Height of dominant paths h = O(n0))

I The transition point α = 1 itself forms the third phase.

1/α10

SA, α: O(ln n) O(
√
n) O(n)

h: O(n0) O(
√
n) O(n)
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Summary and discussion 1

Summary

I We have reviewed the (colored) Motzkin spin models which
yield large entanglement entropy proportional to the square
root of the volume.

I We have analytically computed the Rényi entropy of
half-chain in the Motzkin model.

I Phase transition at α = 1 (Totally new phase transition!)
I For 0 < α < 1 (“high temperature”), SA, α = O(n).
I For α > 1 (“low temperature”), SA, α = O(ln n).

I We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]
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Rényi entropy of half-chain for the Fredkin model

I For 0 < α < 1,

SA,α = n
2α

1− α
ln cosh

θ

2
+

1 + α

2(1− α)
ln n − ln s +

1

2
ln
π

4

− 1

2(1− α)
lnα− 1

1− α
ln cosh

θ

2
+

2α

1− α
ln sinh θ

with θ ≡ 1−α
α ln s.

I For α > 1,

SA, α =
3α

2(α− 1)
ln n +

α

2(α− 1)
ln

π

322

− 1

α− 1
×

{
ln Φ

(
s−2(α−1),−2α, 1

2

)
(n: even)

ln Φ
(
s−2(α−1),−2α, 0

)
(n: odd)
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Future directions

I Rényi entropy of chain of general length (in progress)
Our conjecture: the same phase transition occurs for chain of
general length

I Similar computation for semigroup extensions
[F.S., Padmanabhan, 2018], [Padmanabhan, F.S., Korepin, 2018]

I QFT interpretation?

I Holography? Application to quantum gravity or black holes?

Thank you very much for your attention!
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