Factorization and Criticality in Spin Systems

Marco Cerezo¹ In collaboration with R. Rossignoli¹², N. Canosa¹

$^1\mbox{IFLP}$ - UNLP - CONICET, $^2\mbox{CIC}$

Exactly Solvable Quantum Chains June 22, 2018 @ Natal

UNIVERSIDAD NACIONAL DE LA PLATA

cerezo@fisica.unlp.edu.ar

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
•	0000	0000	000000	00000000	0000	00

Outline

Outline •	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
Out	tline					

 Motivation: Quantum spin systems in the context of Quantum Information and Quantum Computation

Outline •	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
Out	tline					

- Motivation: Quantum spin systems in the context of Quantum Information and Quantum Computation
- What is factorization?

Outline •	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
Out	tline					

- Motivation: Quantum spin systems in the context of Quantum Information and Quantum Computation
- What is factorization?
- General spin arrays with anisotropic *XYZ* couplings.

Outline •	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
Out	tline					

- Motivation: Quantum spin systems in the context of Quantum Information and Quantum Computation
- What is factorization?
- General spin arrays with anisotropic *XYZ* couplings.
- General spin arrays with *XXZ* couplings immersed in nonuniform fields.

Outline •	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
-						

- Motivation: Quantum spin systems in the context of Quantum Information and Quantum Computation
- What is factorization?

Outline

- General spin arrays with anisotropic *XYZ* couplings.
- General spin arrays with *XXZ* couplings immersed in nonuniform fields.
- Separable ground state engineering.

Outline •	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
-						

- Motivation: Quantum spin systems in the context of Quantum Information and Quantum Computation
- What is factorization?

Outline

- General spin arrays with anisotropic *XYZ* couplings.
- General spin arrays with *XXZ* couplings immersed in nonuniform fields.
- Separable ground state engineering.
- Conclusions and perspectives

Quantum Information and Quantum Computation

Quantum Information and Quantum Computation

Quantum Information and Quantum Computation

Study of the information processing tasks that can be accomplished using quantum mechanical systems.

Quantum Information and Quantum Computation

Quantum Information and Quantum Computation

Study of the information processing tasks that can be accomplished using quantum mechanical systems.

• Quantum Computer capable of simulating quantum systems (Feynmann 1982).

Quantum Information and Quantum Computation

Quantum Information and Quantum Computation

Study of the information processing tasks that can be accomplished using quantum mechanical systems.

- Quantum Computer capable of simulating quantum systems (Feynmann 1982).
- Quantum Algorithms can solve some problems more efficiently than their classical counterpart (Deutsh 1985, Shor 1994, Grover 1997).

Quantum Information and Quantum Computation

Quantum Information and Quantum Computation

Study of the information processing tasks that can be accomplished using quantum mechanical systems.

- Quantum Computer capable of simulating quantum systems (Feynmann 1982).
- Quantum Algorithms can solve some problems more efficiently than their classical counterpart (Deutsh 1985, Shor 1994, Grover 1997).
- New forms of information transmission : quantum teleportation, quantum cryptography.

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ...

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

Quantum Annealers

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

Quantum Annealers

Quantum Computers

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

Quantum Annealers

Quantum Computers

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

Quantum Annealers

Quantum Computers

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

Quantum Annealers

Quantum Computers

Quantum Comunications

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Dawn of the Quantum Era

A few short years ago, we used to talk about **Quantum Computers** in terms of **pure academic research** or **science fiction** ... ¹

Quantum Annealers

Quantum Computers

Quantum Comunications

¹or sometimes both in order to get funding. (Shh. Don't Tell Anyone!)

Entanglement

Entanglement (a.k.a. Spooky action at a distance)

Fundamental resource in Quantum Information and Quantum Computation.

Entanglement

Entanglement (a.k.a. Spooky action at a distance)

Fundamental resource in Quantum Information and Quantum Computation.

Entanglement

Entanglement (a.k.a. Spooky action at a distance)

Fundamental resource in Quantum Information and Quantum Computation.

Quantum correlations that don't have a classical analog.

Entanglement

Entanglement (a.k.a. Spooky action at a distance)

Fundamental resource in Quantum Information and Quantum Computation.

Quantum correlations that don't have a classical analog.

The identification and quantification of these non-classical correlations is a problem far from being closed.

Entanglement

Entanglement (a.k.a. Spooky action at a distance)

Fundamental resource in Quantum Information and Quantum Computation.

Quantum correlations that don't have a classical analog.

The identification and quantification of these non-classical correlations is a problem far from being closed.

What about spin systems ?

$$H=-\sum_{i,\mu}h^i\cdot S_i-rac{1}{2}\sum_{i,j}S_i\cdot \mathcal{J}^{ij}S_j$$
 $H=-\sum_{i,\mu}h^i_\mu S^\mu_i-rac{1}{2}\sum_{i,j,\mu,
u}J^{ij}_{\mu
u}S^\mu_iS^
u_j,$

Some (basic) considerations

Some (basic) considerations

In the absence of magnetic fields:

$$H = -\sum_{i,\mu} h^{i}_{\mu} S^{\mu}_{i} - \frac{1}{2} \sum_{i,j,\mu,\nu} J^{ij}_{\mu\nu} S^{\mu}_{i} S^{\nu}_{j},$$

.

Some (basic) considerations

In the absence of magnetic fields:

$$H = -\sum_{i,\mu} h^i_\mu S^\mu_i - rac{1}{2} \sum_{i,j,\mu,
u} J^{ij}_{\mu
u} S^\mu_i S^
u_j$$

the ground state (GS) is typically entangled.

With pairwise entanglement's range similar to that of the interactions .

Some (basic) considerations

In the absence of magnetic fields:

$$H = -\sum_{i,\mu} h_{\mu}^{i} S_{i}^{\mu} - \frac{1}{2} \sum_{i,j,\mu,\nu} J_{\mu\nu}^{ij} S_{i}^{\mu} S_{j}^{\nu}$$

the ground state (GS) is typically entangled .

With pairwise entanglement's range similar to that of the interactions .

When spin systems are immersed in **finite magnetic fields**, the **GS** still remains an **entangled state**.

Some (basic) considerations

In the absence of magnetic fields:

$$H = -\sum_{i,\mu} h^{i}_{\mu} S^{\mu}_{i} - \frac{1}{2} \sum_{i,j,\mu,\nu} J^{ij}_{\mu\nu} S^{\mu}_{i} S^{\nu}_{j}$$

the ground state (GS) is typically entangled.

With pairwise entanglement's range similar to that of the interactions .

When spin systems are immersed in **finite magnetic fields**, the **GS** still remains an **entangled state**.

If we want a separable GS (initialization): "turn off" the interaction or apply strong magnetic fields ($h^i_\mu >> J^{ij}_{\mu\nu}$):

$$H=-\sum_{i,\mu}h^i_\mu S^\mu_i-rac{1}{2}\sum_{i,j,\mu,
u}J^{ij}_{\mu
u}S^\mu_iS^
u_j,$$

the spins align with the magnetic fields.

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields?

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

Specific values and orientation of the field at which:

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

Specific values and orientation of the field at which:

• The GS is completely separable

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

- The GS is completely separable
- In its vicinity the pairwise entanglement reaches full range

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

- The GS is completely separable
- In its vicinity the pairwise entanglement reaches full range
- Analytical results can be determined for the GS

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

- The GS is completely separable
- In its vicinity the pairwise entanglement reaches full range
- Analytical results can be determined for the GS
- Quantum critical point

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

- The GS is completely separable
- In its vicinity the pairwise entanglement reaches full range
- Analytical results can be determined for the GS
- Quantum critical point

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

Specific values and orientation of the field at which:

- The GS is completely separable
- In its vicinity the pairwise entanglement reaches full range
- Analytical results can be determined for the GS
- Quantum critical point

Factorizing field \equiv the **mean field** solution becomes **EXACT**.

Factorizing Field

Is it possible to have a separable GS in the presence of spin interactions and finite magnetic fields? \Rightarrow YES!!

Factorizing Field

Specific values and orientation of the field at which:

- The GS is completely separable
- In its vicinity the pairwise entanglement reaches full range
- Analytical results can be determined for the GS
- Quantum critical point

Factorizing field \equiv the **mean field** solution becomes **EXACT**.

Factorized states can be used as **Sector** initial states for quantum information protocols.

A brief history of factorization

Physica 112A (1982) 235-255 North-Holland Publishing Co. Received 12 October 1981

ANTIFERROMAGNETIC LONG-RANGE ORDER IN THE ANISOTROPIC QUANTUM SPIN CHAIN

Josef KURMANN and Harry THOMAS

Institut Für Physik, Universität Basel, CH-4056 Basel, Switzerland

and

Gerhard MÜLLER

Department of Physics, University of Rhode Island, Kingston, R.I. 02881, USA

A brief history of factorization

Physica 112A (1982) 235-255 North-Holland Publishing Co. Received 12 October 1981

ANTIFERROMAGNETIC LONG-RANGE ORDER IN THE ANISOTROPIC QUANTUM SPIN CHAIN

VOLUME 93, NUMBER 16	PHYSICAL	REVIEW	LETTERS	week ending 15 OCTOBER 2004	IAS asel, Switzerland
Studying Qu: Tommaso Roscilde, ¹ P ¹ Department of Physics and A ² Istituto Nazionale per la ³ Dipartimento di Fis ⁴ Istituto Nazionale di Fi	antum Spin Syst aola Verrucchi, ² And stronomy, University a Fisica della Materia, ica dell'Università di sica Nucleare, Escione (Received 26 April 2	ems throug drea Fubini, ^{2,} f Southern Cal UdR Firenze, Via G. di Firenze, Via 004: publishee	gh Entanglemo ³ Stephan Haas, ¹ lifornia, Los Angele ña G. Sansone 1, 1-5 Sansone 1, 1-50015 a G. Sansone 1, 1-50 d 14 October 2004)	ent Estimators and Valerio Tognetti ^{2,3,4} es, California 90089-0484, USA 50019 Sesto Fino (F1), Italy 9 Sesto Fino (F1), Italy 0019 Sesto Fino (F1), Italy	gston, R.I. 02881, USA

Factorization The XYZ case The XXZ case 0000 A brief history of factorization Physica 112A (1982) 235-255 North-Holland Publishing Co. Received 12 October 1981 ANTIFERROMAGNETIC LONG-RANGE ORDER IN THE ANISOTROPIC QUANTUM SPIN CHAIN [AS week ending PHYSICAL REVIEW LETTERS VOLUME 93, NUMBER 16 15 OCTOBER 2004 asel. Switzerland Studying Quantum Spin Systems through Entanglement Estimators week ending Tommaso Roscilde,1 Paola Verrucchi,2 Andrea Fubini,2,3 St pRL 94, 147208 (2005) PHYSICAL REVIEW LETTERS 15 APRIL 2005 ¹Department of Physics and Astronomy, University of Southern Califor ²Istituto Nazionale per la Fisica della Materia, UdR Firenze, Via C ³Dipartimento di Fisica dell'Università di Firenze, Via G. San Entanglement and Factorized Ground States in Two-Dimensional Ouantum Antiferromagnets ⁴Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via G. (Received 26 April 2004; published 14 Tommaso Roscilde,1 Paola Verrucchi,2.3 Andrea Fubini,4.6 Stephan Haas,1 and Valerio Tognetti2.4.5 ¹Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA ²Istituto Nazionale per la Fisica della Materia, UdR Firenze, Via G. Sansone 1, I-50019 Sesto F.no (FI), Italy ³Istituto Sistemi Complessi - C.N.R., Sez, di Firenze, via Madonna del Piano, I-50019 Sesto E.no (FI), Italy ⁴Dipartimento di Fisica dell'Università di Firenze, Via G. Sansone 1, I-50019 Sesto F.no (FI), Italy ⁵Istituto Nazionale di Fisica Nucleare Sez di Firenze Via G Sansone 1 1-50019 Sesto Eno (FI) Italy ⁶MATIS-INFM & DMFCI, Università di Catania, V.le A. Doria 6, 1-95125 Catania, Italy (Received 20 December 2004; published 15 April 2005)

Factorization The XYZ case The XXZ case Separable State Engineering Conclusions and perspective 0000 A brief history of factorization Physica 112A (1982) 235-255 North-Holland Publishing Co. Received 12 October 1981 ANTIFERROMAGNETIC LONG-RANGE ORDER IN THE ANISOTROPIC QUANTUM SPIN CHAIN [AS week ending PHYSICAL REVIEW LETTERS VOLUME 93, NUMBER 16 15 OCTOBER 2004 asel. Switzerland Studying Quantum Spin Systems through Entanglement Estimators week ending Tommaso Roscilde,¹ Paola Verrucchi,² Andrea Fubini,^{2,3} St ppt 94 147208 (2005) PHYSICAL REVIEW LETTERS 15 APRIL 2005 ¹Department of Physics and Astronomy, University of Southern Califor ²Istituto Nazionale per la Fisica della Materia, UdR Firenze, Via C ³Dipartimento di Fisica dell'Università di Firenze, Via G. San. Entanglement and Factorized Ground States in Two-Dimensional Quantum Antiferromagnets ⁴Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via G. ^{1,3} Andrea Fubini, ^{4,6} Stephan Haas,¹ and Valerio Tognetti^{2,4,5} PHYSICAL REVIEW LETTERS week ending PRL 100, 197201 (2008) 16 MAY 2008 viversity of Southern California, Los Angeles, CA 90089-0484, USA eria, UdR Firenze, Via G. Sansone 1, 1-50019 Sesto Eno (FI). Italy di Firenze, via Madonna del Piano, I-50019 Sesto E.no (FI), Italy Theory of Ground State Factorization in Quantum Cooperative Systems tà di Firenze, Via G. Sansone 1, I-50019 Sesto Eno (FI). Italy

Salvatore M, Giampaolo, 1.2 Gerardo Adesso, 1.2 and Fabrizio Illuminati 1.2.3,* ¹Dipartimento di Matematica e Informatica, Università deeli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy ²CNR-INFM Coherentia, Napoli, Italy; CNISM, Unità di Salerno, Italy; and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Italy ³ISI Foundation for Scientific Interchange, Viale Settimio Severo 65, 1-10133 Turin, Italy (Received 31 March 2008; published 13 May 2008)

Ser di Firenze Via G Sansone 1 1-50019 Sesto Eno (FI) Italy ersità di Catania, V.le A. Doria 6, I-95125 Catania, Italy ecember 2004; published 15 April 2005)

Factorization The XYZ case The XXZ case 0000 A brief history of factorization Physica 112A (1982) 235-255 North-Holland Publishing Co. Received 12 October 1981 ANTIFERROMAGNETIC LONG-RANGE ORDER IN THE ANISOTROPIC QUANTUM SPIN CHAIN [AS week ending PHYSICAL REVIEW LETTERS VOLUME 93, NUMBER 16 15 OCTOBER 2004 asel. Switzerland Studying Quantum Spin Systems through Entanglement Estimators week ending Tommaso Roscilde,¹ Paola Verrucchi,² Andrea Fubini,^{2,3} St ppt 94 147208 (2005) PHYSICAL REVIEW LETTERS 15 APRIL 2005 ¹Department of Physics and Astronomy, University of Southern Califor ²Istituto Nazionale per la Fisica della Materia, UdR Firenze, Via C ³Dipartimento di Fisica dell'Università di Firenze, Via G. San. Entanglement and Factorized Ground States in Two-Dimensional Quantum Antiferromagnets ⁴Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via G. ^{1,3} Andrea Fubini, ^{4,6} Stephan Haas,¹ and Valerio Tognetti^{2,4,5} PHYSICAL REVIEW LETTERS week ending PRL 100, 197201 (2008) 16 MAY 2008 viversity of Southern California, Los Angeles, CA 90089-0484, USA eria, UdR Firenze, Via G. Sansone 1, 1-50019 Sesto Eno (FI). Italy di Firenze, via Madonna del Piano, I-50019 Sesto E.no (FI), Italy Theory of Ground State Factorization in Quantum Cooperative Systems tà di Firenze Via G. Sansone 1, L-50019 Sesto Eno (FI). Italy week ending Salvatore M. Giampaolo,^{1,2} Gerardo Adesso,^{1,2} and PRL 104, 207202 (2010) PHYSICAL REVIEW LETTERS 21 MAY 2010 ¹Dipartimento di Matematica e Informatica, Università degli Studi di Salerno, 1 ²CNR-INFM Coherentia, Napoli, Italy: CNISM, Ur and INFN, Sezione di Napoli-Gruppo Collega. Probing Quantum Frustrated Systems via Factorization of the Ground State ³ISI Foundation for Scientific Interchange, Viale Settimio S (Received 31 March 2008; published 13 Salvatore M. Giampaolo,1 Gerardo Adesso,2 and Fabrizio Illuminati1,* ¹Dipartimento di Matematica e Informatica, Università degli Studi di Salerno, CNR-SPIN, CNISM, Unità di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA), Italy ²School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

(Received 24 June 2009; revised manuscript received 20 April 2010; published 19 May 2010)

Outline o	Motivation 0000	Factorization ○●○○	The XYZ case	The XXZ case	Separa 0000	ble State Engi	ineering	Conclusions a	nd perspectiv
Ab	rief hi	istory	of factor	ization					
		Physica 112A (1	982) 235–255 North ANTIFERROM IN THE ANISO	-Holland Publishing AGNETIC LON VTROPIC QUAN	Co. Re G-RAN	ceived 12 Octo GE ORDEN SPIN CHAI	ober 1981 R N		
VOLUME 93, N	UMBER 16	PHYSICAL	REVIEW LETTER	S 15 00	eek ending TOBER 2004	IAS asel, Switze r la	nd		
	Studying Qu	antum Spin Syst	ems through Entangl	ement Estimators			1		
Tomn ¹ Departmen ² Istituto ³ E ⁴ Istitu PRL 100 , 1972	naso Roscilde, ¹ F at of Physics and A o Nazionale per la Dipartimento di Fis to Nazionale di Fi 01 (2008)	aola Verrucchi, ² And stronomy, University o Fisica della Materia, ica dell'Università di sica Nucleare, Sezione PHYSICAL	trea Fubini, ^{2,3} St <u>PRL 94,</u> f Southern Califor UdR Firenze, Via (Firenze, Via G. San di Firenze, Via G. REVIEW LETTERS	147208 (2005) glement and Factorize	PHYSIC	AL REVIEW	LETTERS Dimensiona ⁶ Stephan Haa California Los	3 I Quantum Antif Is, ¹ and Valerio Togna Angeles CA 90089-04.	week ending 15 APRIL 2005
1	Theory of Grou	und State Factoriz	cation in Quantum Coo	operative Systems		eria, UdR Firenze, Vi di Firenze, via Mado tà di Firenze Via G	ia G. Sansone 1 nna del Piano, Sansone 1 1-56	, I-50019 Sesto F.no (F I-50019 Sesto F.no (FI) 1019 Sesto F.no (FI) II	T), Italy), Italy
¹ Dipartimento di	Salvatore N Matematica e Info	I. Giampaolo, ^{1,2} Gerar rmatica. Università deel	do Adesso, ^{1,2} and PRL 104	, 207202 (2010)	PHYSIC	AL REVIEW	LETTER	S	week ending 21 MAY 2010
	² CNR-1 and ³ ISI Foundation	NFM Coherentia, Napol INFN, Sezione di Napol for Scientific Interchan (Received 31 March	li, Italy; CNISM, Ur li—Gruppo Collega ge, Viale Settimio S 2008: nublished 13	Probing Quantum	Frustrate	d Systems via Fa	actorizatior	1 of the Ground S	itate
	Entanglem	PHYSICAL REV	TEW A 77, 052322 (200	8) torizing fields), ¹ Gerardo Adesso, Iniversità degli Studi gato di Salerno, Via if Nottingham, Univer- universita provinci 2010	² and Fabrizio di Salerno, CN Ponte don Meli rsity Park, Nott	> Illuminati ^{1,*} 'R-SPIN, CNISM, Unità 'llo, I-84084 Fisciano (ingham NG7 2RD, Uni ubliched 10 May 2010)	di Salerno, SA), Italy ted Kingdom
Departame	nto de Física-IF (Re	R. Rossignoli, N. LP, Universidad Na ceived 29 Novembe	Canosa, and J. M. Ma cional de La Plata, C.C. r 2007; published 19 Ma	tera 67, La Plata (1900), Arg y 2008)	entina	anuscript received 2	о дрин 2010, р	uonsiloa 19 May 2010)	'

Outline o	Motivation 0000	Factorization ○●○○	The XYZ case	The XXZ case	Separa 0000	able State Engin	eering Conc	lusions and perspectiv
Ab	rief h	istory	of factor	ization				
Physica 112A (1982) 235-255 North-Holland Publishing Co. Received 12 October 1981 ANTIFERROMAGNETIC LONG-RANGE ORDER								
VOLUME 93, N	umber 16	PHYSICAL	REVIEW LETTER	S 15 00	eek ending CTOBER 2004	IAS asel, Switzerland	4	
	Studying Qu	antum Spin Syst	ems through Entangl	ement Estimators				
Tomr ¹ Departmen ² Istituto ³ I ⁴ Istitu	naso Roscilde, ¹ F nt of Physics and A o Nazionale per la Dipartimento di Fis tto Nazionale di Fi	aola Verrucchi, ² And stronomy, University o Fisica della Materia, sica dell'Università di sica Nucleare, Sezione	drea Fubini, ^{2,3} St f Southern Califor UdR Firenze, Via (Firenze, Via G. San di Firenze, Via G.	147208 (2005) glement and Factorize	PHYSIC ed Groun	CAL REVIEW I	ETTERS	week ending 15 APRIL 2005 atum Antiferromagnets
PRL 100, 1972	01 (2008)	PHYSICAL I	REVIEW LETTERS	wee 16 M	ek ending MAY 2008	^{1,3} Andrea Fubini, ^{4,6} S uversity of Southern Ca	Stephan Haas, ¹ and ' lifornia, Los Angeles,	Valerio Tognetti ^{2,4,5} CA 90089-0484, USA
Theory of Ground State Factorization in Quantum Cooperative Systems eria, UdB Firenze, Via G. Sansone, 1, -50019 Sesto Eno (FI), Italy di Firenze, Via G. Sansone, 1, -50019 Sesto Eno (FI), Italy di Firenze, Via G. Sansone, 1, -50019 Sesto Eno (FI), Italy								
	Salvatore N	I. Giampaolo, ^{1,2} Gerar	do Adesso,1.2 and PRL 104	, 207202 (2010)	PHYSIC	CAL REVIEW I	ETTERS	week ending 21 MAY 2010
¹ Dipartimento d	i Matematica e Info ² CNR-1 and ³ ISI Foundation	rmatica, Università degl NFM Coherentia, Napol INFN, Sezione di Napol a for Scientific Interchan (Received 31 March	i Studi di Salerno, V li, Italy; CNISM, Ur li—Gruppo Collega ge, Viale Settimio S 2008: published 13	Probing Quantum	Frustrate	ed Systems via Fac	torization of the	Ground State
		PHYSICAL REV	VIEW A 77, 052322 (200	8)),' Gerardo Adesso," : Iniversità degli Studi di gato di Salerno, Via Po	and Fabrizio Illumir Salerno, CNR-SPIN, inte don Melillo, I-840	iati ¹¹⁵ CNISM, Unità di Salerno, 284 Fisciano (SA), Italy
	Entanglem	ent of finite c	yclic chains at fac	torizing fields		of Nottingham, Universit	ty Park, Nottingham 1 April 2010: published	VG7 2RD, United Kingdom 19 May 2010)
Departame	nto de Física-IF (Re	R. Rossignoli, N. LP, Universidad Na ceived 29 Novembe	Canosa, and J acional de La Ple er 2007; publishe	ization and entangle	PHYSIC ment in g	CAL REVIEW A 80 , 062 eneral XYZ spin a	325 (2009) arrays in nonur	niform transverse fields
				Departamento de Física (I	R. Rossig I-IFLP, Unive Received 22	noli, N. Canosa, and J ersidad Nacional de La I May 2009; published 10	I. M. Matera Plata, CC 67, La Plat December 2009)	a 1900, Argentina

Outline o	Motivation	Factorization ○●○○	The XYZ case	The XXZ case	Separal 0000	ble State Eng	ineering C o	onclusions and perspectiv
A bi	rief hi	istory	of factor	ization				
		Physica 112A (1982) 235–255 North ANTIFERROM	Holland Publishing	Co. Re G-RAN	ceived 12 Octo	ober 1981 R	
VOLUME 93, NU	umber 16	PHYSICAL	IN THE ANISO	S 15 00	CTUM S	SPIN CHAI IAS asel, Switzerla	N nd	
Tomm ¹ Departmen ² Istituto ³ D ⁴ Istituto	Studying Qua naso Roscilde, ¹ P t of Physics and A Nazionale per la sipartimento di Fis	antum Spin Syst taola Verrucchi, ² And stronomy, University of Fisica della Materia, tica dell'Università di rica Nuerono, Serieri	ems through Entangl drea Fubini, ^{2,3} St <u>PRL</u> 94, f Southern Califor UdR Firenze, Via (Firenze, Via G. San Entan	ement Estimators 147208 (2005) glement and Factorize	PHYSIC ed Ground	AL REVIEW	LETTERS Dimensional (week ending 15 APRIL 2005 Quantum Antiferromagnets
PRL 100, 1972()1 (2008) Theory of Grou	PHYSICAL	REVIEW LETTERS	we 16? perative Systems	ek ending MAY 2008	^{2,3} Andrea Fubini, ^{4,} <i>viversity of Southern</i> <i>eria, UdR Firenze, Vi</i> <i>di Firenze, via Mado</i> <i>th di Firenze, Via G</i>	⁶ Stephan Haas, ¹ California, Los An ia G. Sansone 1, I- onna del Piano, I-5 Sansone 1, I-5001	and Valerio Tognetti ^{2,4,5} geles, CA 90089-0484, USA 50019 Sesto Eno (FI), Italy 0019 Sesto Eno (FI), Italy 9 Sesto Eno (FI), Italy
¹ Dipartimento di	Salvatore M Matematica e Infor ² CNR-I and ³ ISI Foundation	 Giampaolo,^{1,2} Gerau matica, Università degl NFM Coherentia, Napo INFN, Sezione di Napoi for Scientific Interchan (Received 31 March) 	rdo Adesso, ^{1,2} and PRL 104 i Studi di Salerno, 1 li, Italy: CNISM, Ur li-Gruppo Collega ge, Vale Settimio S 2008: rublished 13	, 207202 (2010) Probing Quantum	PHYSIC Frustrated	AL REVIEW	LETTERS	week ending 21 MAY 2010 f the Ground State
	Entanglem	PHYSICAL REV	VIEW A 77, 052322 (2003 yclic chains at fac	³⁾ torizing fields		», ¹ Gerardo Adesso Iniversità degli Studi gato di Salerno, Via of Nottingham, Unive Ianuscrint received 20	, ² and Fabrizio II di Salerno, CNR-S Ponte don Melillo, rsity Park, Notting, 0 April 2010; publ.	luminati ^{1,59} SPIN, CNISM, Unità di Salerno, I-84084 Fisciano (SA), Italy ham NG7 2RD, United Kingdom lished 19 May 2010)
Departamer	nto de Física-IF (Re	R. Rossignoli, N. LP, Universidad Na ceived 29 Novembe	Canosa, and J acional de La Pl er 2007; publishe	ization and entangle	PHYSIC/	AL REVIEW A 80, 0 eneral XYZ spin	062325 (2009) n arrays in no	onuniform transverse fields
	Transv	verse fie	eld!	Departamento de Física (1	R. Rossign <i>IFLP, Univer</i> Received 22 N	oli, N. Canosa, and rsidad Nacional de L fay 2009; published	d J. M. Matera a Plata, CC 67, La 10 December 2009	a Plata 1900, Argentina D)

Factorization general equations

System of *N* spins s_i interacting through XYZ Heisenberg couplings of arbitrary range in the presence of a general magnetic fields h^i

$$H=-\sum_i h^i\cdot S_i-rac{1}{2}\sum_{i,j}S_i\cdot \mathcal{J}^{ij}S_j$$

Factorization general equations

System of *N* spins s_i interacting through XYZ Heisenberg couplings of arbitrary range in the presence of a general magnetic fields h^i

$$H = -\sum_i h^i \cdot S_i - rac{1}{2} \sum_{i,j} S_i \cdot \mathcal{J}^{ij} S_j$$

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^n e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow\wedge,$$

is an exact eigenstate iff it satisfies¹ :

¹MC, R. Rossignoli, N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Factorization general equations

System of *N* spins s_i interacting through XYZ Heisenberg couplings of arbitrary range in the presence of a general magnetic fields h^i

$$H = -\sum_i h^i \cdot S_i - rac{1}{2} \sum_{i,j} S_i \cdot \mathcal{J}^{ij} S_j$$

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow\rangle,$$

is an exact eigenstate iff it satisfies¹ :

Field independent equations: Which state?

$$oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{x'}=oldsymbol{n}_i^{y'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{y'}, \quad oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{y'}=-oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{x'}$$

with $m{n}_i^{x',y'}\perpm{n}_i\equiv\langlem{S}_i
angle/s_i\,$ spin alignment direction

¹MC, R. Rossignoli, N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Factorization general equations

System of *N* spins s_i interacting through XYZ Heisenberg couplings of arbitrary range in the presence of a general magnetic fields h^i

$$H = -\sum_i h^i \cdot S_i - rac{1}{2} \sum_{i,j} S_i \cdot \mathcal{J}^{ij} S_j$$

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow\rangle,$$

is an exact eigenstate iff it satisfies¹ :

Field independent equations: Which state?

$$oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{x'}=oldsymbol{n}_i^{y'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{y'}, \quad oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{y'}=-oldsymbol{n}_i^{y'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{x'}$$

with ${m n}_i^{x',y'}\perp {m n}_i\equiv \langle {m S}_i
angle/s_i\,$ spin alignment direction

2 The field-dependent conditions: What fields?

$$\boldsymbol{n}_i imes (\boldsymbol{h}_i + \sum_j \mathcal{J}^{ij} \langle \boldsymbol{S}_j \rangle) = \boldsymbol{0},$$

¹MC, R. Rossignoli, N. Canosa, Phys. Rev. B 92, 224422 (2015).

Factorization general equations

System of *N* spins s_i interacting through XYZ Heisenberg couplings of arbitrary range in the presence of a general magnetic fields h^i

$$H = -\sum_i h^i \cdot S_i - rac{1}{2} \sum_{i,j} S_i \cdot \mathcal{J}^{ij} S_j$$

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow\rangle,$$

is an exact eigenstate iff it satisfies¹ :

Field independent equations: Which state?

$$oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{x'}=oldsymbol{n}_i^{y'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{y'}, \quad oldsymbol{n}_i^{x'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{y'}=-oldsymbol{n}_i^{y'}\cdot \mathcal{J}^{ij}oldsymbol{n}_j^{x'}$$

with ${m n}_i^{x',y'}\perp {m n}_i\equiv \langle {m S}_i
angle/s_i\,$ spin alignment direction

2 The field-dependent conditions: What fields?

$$\boldsymbol{n}_i imes (\boldsymbol{h}_i + \sum_j \mathcal{J}^{ij} \langle \boldsymbol{S}_j \rangle) = \boldsymbol{0},$$

¹MC, R. Rossignoli, N. Canosa, Phys. Rev. B 92, 224422 (2015).

Factorization general equations

System of N spins s_i interacting through XYZ Heisenberg couplings of arbitrary range in the presence of a general magnetic fields h^i

$$H = -\sum_i h^i \cdot S_i - rac{1}{2} \sum_{i,j} S_i \cdot \mathcal{J}^{ij} S_j$$

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow\rangle,$$

is an exact eigenstate iff it satisfies¹ :

Field independent equations: Which state?

$$oldsymbol{n}_i^{x'}\cdot\mathcal{J}^{ij}oldsymbol{n}_j^{x'}=oldsymbol{n}_i^{y'}\cdot\mathcal{J}^{ij}oldsymbol{n}_j^{y'},\quadoldsymbol{n}_i^{x'}\cdot\mathcal{J}^{ij}oldsymbol{n}_j^{y'}=-oldsymbol{n}_i^{y'}\cdot\mathcal{J}^{ij}oldsymbol{n}_j^{x'}$$

with ${m n}_i^{x',y'}\perp {m n}_i\equiv \langle {m S}_i
angle/s_i\,$ spin alignment direction

The field-dependent conditions: What fields?

$$m{n}_i imes (m{h}_i + \sum_j \mathcal{J}^{ij} \langle m{S}_j
angle) = m{0}$$

 h_i h_i S_i

which implies $\mathbf{h}_i = \mathbf{h}_i^{\perp} + \mathbf{h}_i^{\parallel}$. $(\mathbf{h}_i^{\parallel} = h_i \mathbf{n}_i, \quad \mathbf{n}_i \cdot \mathbf{h}_i^{\perp} = 0)$

¹MC, R. Rossignoli, N. Canosa, Phys. Rev. B **92**, 224422 (2015).

What is it good for?

What is it good for?

The determination of factorized ground states is a useful **tool** towards further improving our understanding of spin systems.

• Detect entanglement phase transitions and critical points.

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .
- Obtain **analytical results** at factorization points and curves.

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .
- Obtain **analytical results** at factorization points and curves.
- Discover nontrivial behavior .

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .
- Obtain analytical results at factorization points and curves.
- Discover nontrivial behavior .
- Enables the possibility of ground state engineering .

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .
- Obtain analytical results at factorization points and curves.
- Discover nontrivial behavior .
- Enables the possibility of ground state engineering .

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .
- Obtain analytical results at factorization points and curves.
- Discover nontrivial behavior .
- Enables the possibility of ground state engineering .

What is it good for?

- Detect entanglement phase transitions and critical points.
- Determine ordered phases .
- Obtain analytical results at factorization points and curves.
- Discover nontrivial behavior .
- Enables the possibility of ground state engineering .

The XYZ case

Spin array with anisotropic XYZ couplings in a general fields.

$$H = -\sum_{i} \boldsymbol{h}^{i} \cdot \boldsymbol{S}_{i} - \sum_{i \neq j} J_{x}^{ij} S_{i}^{x} S_{j}^{x} + J_{y}^{ij} S_{i}^{y} S_{j}^{y} + J_{z}^{ij} S_{i}^{z} S_{j}^{z}$$

The XYZ case

Spin array with anisotropic XYZ couplings in a general fields.

$$H = -\sum_{i} \boldsymbol{h}^{i} \cdot \boldsymbol{S}_{i} - \sum_{i \neq j} J_{x}^{ij} S_{i}^{x} S_{j}^{x} + J_{y}^{ij} S_{i}^{y} S_{j}^{y} + J_{z}^{ij} S_{i}^{z} S_{j}^{z}$$

Recap results in FM and AFM systems

The XYZ case

Spin array with anisotropic XYZ couplings in a general fields.

$$H = -\sum_{i} \boldsymbol{h}^{i} \cdot \boldsymbol{S}_{i} - \sum_{i \neq j} J_{x}^{ij} S_{i}^{x} S_{j}^{x} + J_{y}^{ij} S_{i}^{y} S_{j}^{y} + J_{z}^{ij} S_{i}^{z} S_{j}^{z}$$

Recap results in FM and AFM systems \Rightarrow Revise them with our general equations.

Antiferromagnetic spin chain, Recap

¹J. Kurmann, H. Thomas, and G. Müller, Physica A **112**, 235 (1982).

G. Müller, and R. E. Shrock, Phys. Rev B 32, 5845 (1985).

L. Amico, F. Baroni, A. Fubini, D. Patane, V. Tognetti, and P. Verrucchi, Phys. Rev. A 74, 022322 (2006).

F. Franchini, A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 40, 8467 (2007).

S.M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. B 79, 224434 (2009).

Antiferromagnetic spin chain, Recap

Anisotropic XYZ spin chain with first neighbour couplings¹

The Hamiltonian

$$H = -\sum_{i} h_{\mu} S^{\mu}_{i} + \sum_{i} J_{x} S^{x}_{i} S^{x}_{i+1} + J_{y} S^{y}_{i} S^{y}_{i+1} + J_{z} S^{z}_{i} S^{z}_{i+1} ,$$

¹J. Kurmann, H. Thomas, and G. Müller, Physica A **112**, 235 (1982).

G. Müller, and R. E. Shrock, Phys. Rev B 32, 5845 (1985).

L. Amico, F. Baroni, A. Fubini, D. Patane, V. Tognetti, and P. Verrucchi, Phys. Rev. A 74, 022322 (2006).

F. Franchini, A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 40, 8467 (2007).

S.M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. B 79, 224434 (2009).

Antiferromagnetic spin chain, Recap

Anisotropic XYZ spin chain with first neighbour couplings¹

The Hamiltonian

$$H = -\sum_{i} h_{\mu} S^{\mu}_{i} + \sum_{i} J_{x} S^{x}_{i} S^{x}_{i+1} + J_{y} S^{y}_{i} S^{y}_{i+1} + J_{z} S^{z}_{i} S^{z}_{i+1} ,$$

¹J. Kurmann, H. Thomas, and G. Müller, Physica A **112**, 235 (1982).

G. Müller, and R. E. Shrock, Phys. Rev B 32, 5845 (1985).

L. Amico, F. Baroni, A. Fubini, D. Patane, V. Tognetti, and P. Verrucchi, Phys. Rev. A 74, 022322 (2006).

F. Franchini, A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 40, 8467 (2007).

S.M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. B 79, 224434 (2009).

Antiferromagnetic spin chain, Recap

Anisotropic XYZ spin chain with first neighbour couplings¹

The Hamiltonian

$$H = -\sum_{i} h_{\mu} S_{i}^{\mu} + \sum_{i} J_{x} S_{i}^{x} S_{i+1}^{x} + J_{y} S_{i}^{y} S_{i+1}^{y} + J_{z} S_{i}^{z} S_{i+1}^{z},$$

$$\frac{h_x^2}{(J_x + J_z)(J_x + J_y)} + \frac{h_y^2}{(J_y + J_z)(J_y + J_x)} + \frac{h_z}{(J_z + J_x)(J_z + J_y)} = 1$$

¹J. Kurmann, H. Thomas, and G. Müller, Physica A **112**, 235 (1982).

G. Müller, and R. E. Shrock, Phys. Rev B 32, 5845 (1985).

L. Amico, F. Baroni, A. Fubini, D. Patane, V. Tognetti, and P. Verrucchi, Phys. Rev. A 74, 022322 (2006).

F. Franchini, A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 40, 8467 (2007).

S.M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. B 79, 224434 (2009).
Antiferromagnetic spin chain, Recap

Anisotropic XYZ spin chain with first neighbour couplings¹

The Hamiltonian

$$H = -\sum_{i} h_{\mu} S_{i}^{\mu} + \sum_{i} J_{x} S_{i}^{x} S_{i+1}^{x} + J_{y} S_{i}^{y} S_{i+1}^{y} + J_{z} S_{i}^{z} S_{i+1}^{z},$$

$$\frac{h_x^2}{(J_x + J_z)(J_x + J_y)} + \frac{h_y^2}{(J_y + J_z)(J_y + J_x)} + \frac{h_z^2}{(J_z + J_x)(J_z + J_y)} = 1$$

The Néel separable GS breaks translational invariance, it must arise at a GS level crossing and be two-fold degenerate.

¹J. Kurmann, H. Thomas, and G. Müller, Physica A **112**, 235 (1982).

- L. Amico, F. Baroni, A. Fubini, D. Patane, V. Tognetti, and P. Verrucchi, Phys. Rev. A 74, 022322 (2006).
- F. Franchini, A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 40, 8467 (2007).
- S.M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. B 79, 224434 (2009).

G. Müller, and R. E. Shrock, Phys. Rev B 32, 5845 (1985).

Ferromagnetic spin systems, Recap

Anisotropic XYZ systems with first neighbor couplings immersed in transverse fields ¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} |\theta_i\rangle = |\nearrow \nearrow \nearrow \dots\rangle$$

is an exact eigenstate iff

 ¹ R. Rossignoli, N. Canosa, J.M. Matera, Phys. Rev. A 77, 052322 (2008); Phys. Rev. A 80, 062325 (2009).
 N. Canosa, R. Rossignoli, J.M. Matera, Phys. Rev. B 81, 054415 (2010).

Ferromagnetic spin systems, Recap

Anisotropic XYZ systems with first neighbor couplings immersed in transverse fields ¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} |\theta_i\rangle = |\nearrow \nearrow \nearrow \dots\rangle$$

is an exact eigenstate iff

 ¹ R. Rossignoli, N. Canosa, J.M. Matera, Phys. Rev. A 77, 052322 (2008); Phys. Rev. A 80, 062325 (2009).
 N. Canosa, R. Rossignoli, J.M. Matera, Phys. Rev. B 81, 054415 (2010).

Ferromagnetic spin systems, Recap

Anisotropic XYZ systems with first neighbor couplings immersed in transverse fields ¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} |\theta_i\rangle = |\nearrow \nearrow \nearrow \ldots \rangle$$

is an exact eigenstate iff

$$\cos^2 heta=\chi=rac{J_{ij}^y-J_{ij}^z}{J_{ij}^x-J_{ij}^z}$$
 , and $h^i=h^i_s\equiv\sum_j s_j(J_{ij}^x-J_{ij}^z)\sqrt{\chi}$

 ¹ R. Rossignoli, N. Canosa, J.M. Matera, Phys. Rev. A 77, 052322 (2008); Phys. Rev. A 80, 062325 (2009).
 N. Canosa, R. Rossignoli, J.M. Matera, Phys. Rev. B 81, 054415 (2010).

Ferromagnetic spin systems, Recap

Anisotropic XYZ systems with first neighbor couplings immersed in transverse fields ¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} |\theta_i\rangle = |\nearrow \nearrow \nearrow \ldots \rangle$$

is an exact eigenstate iff

$$\cos^2\theta = \chi = rac{J_{ij}^y - J_{ij}^z}{J_{ij}^x - J_{ij}^z}$$
 , and $h^i = h_s^i \equiv \sum_j s_j (J_{ij}^x - J_{ij}^z) \sqrt{\chi}$

• $|\Theta\rangle$ is a GS in FM-type systems ($0 \le |J_{ij}^y| \le J_x^{ij}$ etc.)

¹ R. Rossignoli, N. Canosa, J.M. Matera, Phys. Rev. A **77**, 052322 (2008); Phys. Rev. A **80**, 062325 (2009).

N. Canosa, R. Rossignoli, J.M. Matera, Phys. Rev. B 81, 054415 (2010).

Ferromagnetic spin systems, Recap

Anisotropic XYZ systems with first neighbor couplings immersed in transverse fields ¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} |\theta_i\rangle = |\nearrow \nearrow \nearrow \ldots \rangle$$

is an exact eigenstate iff

$$\cos^2\theta = \chi = rac{J_{ij}^y - J_{ij}^z}{J_{ij}^x - J_{ij}^z}$$
 , and $h^i = h_s^i \equiv \sum_j s_j (J_{ij}^x - J_{ij}^z) \sqrt{\chi}$

 h_i

θ

- $|\Theta\rangle$ is a GS in FM-type systems ($0 \le |J_{ij}^y| \le J_x^{ij}$ etc.)
- $|\Theta\rangle$ breaks parity symmetry ($[H, P_z] = 0$, $P_z = e^{i\pi S_z}$). The GS is two-fold degenerate : linear combinations of the symmetry preserving entangled crossing states.

 ¹ R. Rossignoli, N. Canosa, J.M. Matera, Phys. Rev. A 77, 052322 (2008); Phys. Rev. A 80, 062325 (2009).
 N. Canosa, R. Rossignoli, J.M. Matera, Phys. Rev. B 81, 054415 (2010).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle,$$

is an exact eigenstate iff $\langle S \rangle$ is parallel to a principal plane .

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle,$$

is an exact eigenstate iff $\langle S \rangle$ is parallel to a principal plane .

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle,$$

is an exact eigenstate iff $\langle \mathbf{S} \rangle$ is parallel to a **principal plane**. The *XZ* **plane** solution requires again $\cos^2 \theta = \frac{J_{ij}^y - J_{ij}^z}{J_{iz}^y - J_{ij}^z}$,

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

 $|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle,$

is an exact eigenstate iff $\langle {\bf S} \rangle$ is parallel to a principal plane . The XZ plane solution requires again $\cos^2\theta = \frac{J^y_{ij} - J^z_{ij}}{J^x_{ij} - J^z_{ij}}$, while the factorizing fields of lowest magnitude are $h^i_\perp = \sin\theta\cos\theta\sum_j s_j (J^x_{ij} - J^z_{ij})\sqrt{\chi} \ (\text{also in the } XZ \text{ principal plane }).$

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

 $|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle \dots \rangle,$

is an exact eigenstate iff $\langle {\bf S} \rangle$ is parallel to a principal plane . The XZ plane solution requires again $\cos^2\theta = \frac{J^y_{ij} - J^z_{ij}}{J^x_{ij} - J^z_{ij}}$, while the factorizing fields of lowest magnitude are $h^i_\perp = \sin\theta\cos\theta\sum_j s_j (J^x_{ij} - J^z_{ij})\sqrt{\chi} \ (\text{also in the } XZ \text{ principal plane }).$

 $h_i = h_i^{\perp} + h_i^{\parallel}$, $|\Theta\rangle$ is always a non-degenerate GS in FM and <u>AFM</u> chains if h_i^{\parallel} is sufficiently large: factorization lines in field space.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

 $|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle \dots \rangle,$

is an exact eigenstate iff $\langle {\bf S} \rangle$ is parallel to a principal plane . The XZ plane solution requires again $\cos^2\theta = \frac{J^y_{ij} - J^z_{ij}}{J^x_{ij} - J^z_{ij}}$, while the factorizing fields of lowest magnitude are $h^i_\perp = \sin\theta\cos\theta\sum_j s_j (J^x_{ij} - J^z_{ij})\sqrt{\chi} \ (\text{also in the } XZ \text{ principal plane }).$

 $h_i = h_i^{\perp} + h_i^{\parallel}$, $|\Theta\rangle$ is always a non-degenerate GS in FM and <u>AFM</u> chains if h_i^{\parallel} is sufficiently large: factorization lines in field space.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

 $|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_i^z} e^{-\imath \theta S_i^y} |\uparrow_i\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle \dots \rangle,$

is an exact eigenstate iff $\langle {\bf S} \rangle$ is parallel to a principal plane . The XZ plane solution requires again $\cos^2\theta = \frac{J^y_{ij} - J^z_{ij}}{J^x_{ij} - J^z_{ij}}$, while the factorizing fields of lowest magnitude are $h^i_\perp = \sin\theta\cos\theta\sum_j s_j (J^x_{ij} - J^z_{ij})\sqrt{\chi} \ (\text{also in the } XZ \text{ principal plane }).$

 $h_i = h_i^{\perp} + h_i^{\parallel}$, $|\Theta\rangle$ is always a non-degenerate GS in FM and <u>AFM</u> chains if h_i^{\parallel} is sufficiently large: factorization lines in field space.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Uniform solution¹

The uniform state

 $|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath \phi S_{i}^{z}} e^{-\imath \theta S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow \nearrow \nearrow \nearrow \rangle,$

is an exact eigenstate iff $\langle {\bf S} \rangle$ is parallel to a principal plane . The XZ plane solution requires again $\cos^2\theta = \frac{J^y_{ij} - J^z_{ij}}{J^x_{ij} - J^z_{ij}}$, while the factorizing fields of lowest magnitude are $h^i_\perp = \sin\theta\cos\theta\sum_j s_j (J^x_{ij} - J^z_{ij})\sqrt{\chi} \ (\text{also in the } XZ \text{ principal plane }).$

 $h_i = h_i^{\perp} + h_i^{\parallel}$, $|\Theta\rangle$ is always a non-degenerate GS in FM and <u>AFM</u> chains if h_i^{\parallel} is sufficiently large: factorization lines in field space.

Feasible with a uniform field !

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Néel-type solution¹ The Néel-type state $| \swarrow \nearrow \checkmark \ldots \rangle$ is an exact eigenstate iff the factorizing field $h \in$ ellipsoid $\frac{h_x^2}{(J_x+J_z)(J_x+J_y)} + \frac{h_y^2}{(J_y+J_z)(J_y+J_x)} + \frac{h_z^2}{(J_z+J_x)(J_z+J_y)} = 1$.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Néel-type solution¹ The Néel-type state $| \swarrow \nearrow \checkmark \ldots \rangle$ is an exact eigenstate iff the factorizing field $h \in$ ellipsoid $\frac{h_x^2}{(J_x+J_z)(J_x+J_y)} + \frac{h_y^2}{(J_y+J_z)(J_y+J_x)} + \frac{h_z^2}{(J_z+J_x)(J_z+J_y)} = 1$.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Néel-type solution¹ The Néel-type state $| \swarrow \nearrow \checkmark \ldots \rangle$ is an exact eigenstate iff the factorizing field $h \in$ ellipsoid $\frac{h_x^2}{(J_x+J_z)(J_x+J_y)} + \frac{h_y^2}{(J_y+J_z)(J_y+J_x)} + \frac{h_z^2}{(J_z+J_x)(J_z+J_y)} = 1$. GS in AFM chains, excited state in FM chains.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Néel-type solution¹ The Néel-type state $| \swarrow \nearrow \checkmark \cdots \rangle$ is an exact eigenstate iff the factorizing field $h \in$ ellipsoid $\frac{h_x^2}{(J_x+J_z)(J_x+J_y)} + \frac{h_y^2}{(J_y+J_z)(J_y+J_x)} + \frac{h_z^2}{(J_z+J_x)(J_z+J_y)} = 1$. GS in AFM chains, excited state in FM chains.

FM: Just UGS

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B 92, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

Néel-type solution¹ The Néel-type state $| \swarrow \nearrow \checkmark \ldots \rangle$ is an exact eigenstate iff the factorizing field $h \in$ ellipsoid $\frac{h_x^2}{(J_x+J_z)(J_x+J_y)} + \frac{h_y^2}{(J_y+J_z)(J_y+J_x)} + \frac{h_z^2}{(J_z+J_x)(J_z+J_y)} = 1$. GS in AFM chains, excited state in FM chains.

FM: Just UGS AFM: NGS+UGS !!

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Anisotropic FM and AFM XYZ systems, Revised

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

Factorization and entanglement

Spin-1/2 chain of N = 12 spins.

¹MC, R. Rossignoli, and N. Canosa, Phys. Rev. B **92**, 224422 (2015).

The XYZ case

General arrays of spins s_i with XXZ couplings immersed in **nonuniform transverse fields**

$$H = -\sum\limits_{i} h^{i}S_{i}^{z} - \sum\limits_{i < j} J^{ij}(S_{i}^{x}S_{j}^{x} + S_{i}^{y}S_{j}^{y}) + J_{z}^{ij}S_{i}^{z}S_{j}^{z}$$

The XYZ case

General arrays of spins s_i with XXZ couplings immersed in **nonuniform transverse fields**

$$H = -\sum\limits_{i} h^{i}S_{i}^{z} - \sum\limits_{i < j} J^{ij}(S_{i}^{x}S_{j}^{x} + S_{i}^{y}S_{j}^{y}) + J_{z}^{ij}S_{i}^{z}S_{j}^{z}$$

Since $[H, S^z] = 0$, its eigenstates can be characterized by their total magnetization M along z.

Factorization General Equations

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow \swarrow \land \dots \rangle,$$

is an exact eigenstate

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Factorization General Equations

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_{i}S_{i}^{z}} e^{-\imath\theta_{i}S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow\nearrow\searrow\rangle,$$

is an exact eigenstate

1 Field independent equations: Which state ?

$$\eta_{ij} \equiv \frac{\tan(\theta_j/2)}{\tan(\theta_i/2)} = \Delta_{ij} \pm \sqrt{\Delta_{ij}^2 - 1}, \qquad \Delta_{ij} = J_z^{ij}/J^{ij}$$

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Factorization General Equations

The completely separable state

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_{i}S_{i}^{z}} e^{-\imath\theta_{i}S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow\nearrow\searrow\rangle,$$

is an exact eigenstate

1 Field independent equations: Which state ?

$$\eta_{ij} \equiv \frac{\tan(\theta_j/2)}{\tan(\theta_i/2)} = \Delta_{ij} \pm \sqrt{\Delta_{ij}^2 - 1} , \qquad \Delta_{ij} = J_z^{ij}/J^{ij}$$

2 The field-dependent conditions: What fields?

$$h^i_{
m s} = \sum_j s_j
u_{ij} J^{ij} \sqrt{\Delta^2_{ij} - 1}$$

with $\nu_{ij} = \pm 1$ the sign in (1). This Eq. is independent of the angles θ_i and must fulfill the zero sum condition $\sum_i s_i h_s^i = 0$.

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Fundamental Properties

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_{i}S_{i}^{z}} e^{-\imath\theta_{i}S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow\swarrow\searrow \wedge \dots\rangle$$

• The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow \wedge \dots\rangle$$

- The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.
- If $J_z^{ij} \ge 0 \; \forall i, j$, $|\Theta\rangle$ is the **GS** of the system.

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow \wedge \dots\rangle$$

- The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.
- If $J_z^{ij} \ge 0 \; \forall i, j$, $|\Theta\rangle$ is the **GS** of the system.
- This state breaks the basic symmetry of H as it has no definite magnetization , it must arise at an exceptionally point where the GS is 2S + 1 -fold degenerate.

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow \wedge \dots\rangle$$

- The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.
- If $J_z^{ij} \ge 0 \ \forall i, j$, $|\Theta\rangle$ is the **GS** of the system.
- This state breaks the basic symmetry of H as it has no definite magnetization , it must arise at an exceptionally point where the GS is 2S + 1 -fold degenerate.
- ${\bullet}~$ The components of $|\Theta\rangle~$ with definite M~ are also eigenstates of H~ with the same energy E_{Θ} .

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_i S_i^z} e^{-\imath\theta_i S_i^y} |\uparrow_i\rangle = |\nearrow\swarrow\searrow \wedge \dots\rangle$$

- The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.
- If $J_z^{ij} \ge 0 \ \forall i, j$, $|\Theta\rangle$ is the **GS** of the system.
- This state breaks the basic symmetry of H as it has no definite magnetization , it must arise at an exceptionally point where the GS is 2S + 1 -fold degenerate.
- ${\bullet}~$ The components of $|\Theta\rangle~$ with definite M~ are also eigenstates of H~ with the same energy E_{Θ} .

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Fundamental Properties

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_{i}S_{i}^{z}} e^{-\imath\theta_{i}S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow\swarrow\swarrow \wedge \dots\rangle$$

- The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.
- If $J_z^{ij} \ge 0 \ \forall i, j$, $|\Theta\rangle$ is the GS of the system.
- This state breaks the basic symmetry of H as it has no definite magnetization , it must arise at an exceptionally point where the GS is 2S + 1 -fold degenerate.
- ${\bullet}~$ The components of $|\Theta\rangle~$ with definite M~ are also eigenstates of H~ with the same energy E_{Θ} .

$$P_M|\Theta\rangle \propto \sum_{\substack{m_1,\ldots,m_N\\\sum_i m_i=M}} \left[\prod_{i=1}^N \sqrt{\binom{2s_i}{s_i-m_i}} \eta_{i,i+1}^{\sum_{j=1}^i m_j}\right] |m_1\ldots m_N\rangle, \quad M = -S\ldots S,$$

where $P_M = \frac{1}{2\pi} \int_0^{2\pi} e^{i\varphi(S^z - M)} d\varphi$ is the projector onto total magnetization M. These states are entangled $\forall |M| \leq S - 1$.

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Fundamental Properties

$$|\Theta\rangle = \otimes_{i=1}^{n} e^{-\imath\phi_{i}S_{i}^{z}} e^{-\imath\theta_{i}S_{i}^{y}} |\uparrow_{i}\rangle = |\nearrow\swarrow\searrow \wedge \dots\rangle$$

- The energy of the separable state is $E_{\Theta} = -\sum_{i < j} s_i s_j J_z^{ij}$, which coincides with the energy of the maximally aligned state $|M| = S \equiv \sum_i s_i$.
- If $J_z^{ij} \ge 0 \ \forall i, j$, $|\Theta\rangle$ is the GS of the system.
- This state breaks the basic symmetry of H as it has no definite magnetization , it must arise at an exceptionally point where the GS is 2S + 1 -fold degenerate.
- ${\bullet}~$ The components of $|\Theta\rangle~$ with definite M~ are also eigenstates of H~ with the same energy E_{Θ} .

$$P_M|\Theta\rangle \propto \sum_{\substack{m_1,\ldots,m_N\\\sum_i m_i=M}} [\prod_{i=1}^N \sqrt{\binom{2s_i}{s_i-m_i}} \eta_{i,i+1}^{\sum_{j=1}^i m_j}]|m_1\ldots m_N\rangle, \quad M = -S\ldots S,$$

where $P_M = \frac{1}{2\pi} \int_0^{2\pi} e^{i\varphi(S^z - M)} d\varphi$ is the projector onto total magnetization M. These states are entangled $\forall |M| \leq S - 1$.

In the vicinity of factorization, entanglement reaches full range.

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

Chain of N spins s with first neighbor interactions.

$$\frac{\tan(\theta_j/2)}{\tan(\theta_i/2)} = \frac{J_z}{J} \pm \sqrt{\left(\frac{J_z}{J}\right)^2 - 1}, \quad J_z > J, \qquad h^{ij} = \pm h_s = \pm sJ\sqrt{\Delta^2 - 1}, \quad h^i = \sum_j h^{ij}$$

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

Chain of N spins s with first neighbor interactions.

$$\frac{\tan(\theta_j/2)}{\tan(\theta_i/2)} = \frac{J_z}{J} \pm \sqrt{\left(\frac{J_z}{J}\right)^2 - 1}, \quad J_z > J, \qquad h^{ij} = \pm h_s = \pm s J \sqrt{\Delta^2 - 1}, \quad h^i = \sum_j h^{ij}$$

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

Chain of N spins s with first neighbor interactions.

$$\frac{\tan(\theta_j/2)}{\tan(\theta_i/2)} = \frac{J_z}{J} \pm \sqrt{\left(\frac{J_z}{J}\right)^2 - 1}, \quad J_z > J, \qquad h^{ij} = \pm h_s = \pm s J \sqrt{\Delta^2 - 1}, \quad h^i = \sum_j h^{ij}$$

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).
Building separable solutions, or how playing with LEGOS finally paid off

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Building separable solutions, or how playing with LEGOS finally paid off

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Outline
oMotivation
occoFactorization
occoThe XYZ case
occoSeparable State Engineering
occoConclusions and perspective
occo

Building separable solutions, or how playing with LEGOS finally paid off

Chain of N spins s with first neighbor interactions.

Outline
oMotivation
occoFactorization
occoThe XYZ case
occoSeparable State Engineering
occoConclusions and perspective
occo

Building separable solutions, or how playing with LEGOS finally paid off

Chain of N spins s with first neighbor interactions.

Outline
oMotivation
occoFactorization
occoThe XYZ case
occoSeparable State Engineering
occoConclusions and perspective
occo

Building separable solutions, or how playing with LEGOS finally paid off

Chain of N spins s with first neighbor interactions.

Fundamental Properties (II)

 $^{^1}$ MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Fundamental Properties (II)

By projecting onto magnetization M we can determine **analytical** expressions for the reduce state of any spin pair. For a d-dimensional spin-s system with uniform anisotropy Δ and alternating fields, there are just 3 distinct reduced pair states ρ_{oe}^{M} (odd-even), ρ_{oe}^{M} y ρ_{ee}^{M}

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Fundamental Properties (II)

By projecting onto magnetization M we can determine **analytical expressions for the reduce state of any spin pair**. For a d-dimensional spin-s system with uniform anisotropy Δ and **alternating fields**, there are just 3 distinct reduced pair states ρ_{oe}^{M} (odd-even), ρ_{oe}^{M} y ρ_{ee}^{M}

$$(\rho_{ij}^{M})_{m_{j},m_{j}'}^{m} = \eta^{f_{ij}} \frac{\sqrt{C_{m_{j}}^{s,m} C_{m_{j}'}^{s,m} Q_{Ns-2s-M+m}^{M-m,(\delta+2l_{ij})s}(\eta)}}{Q_{Ns-M}^{M,\delta s}(\eta)}$$

with $m = m_i + m_j = m'_i + m'_j$ the pair magnetization $([\rho^M_{i,j}, S^z_i + S^z_j] = 0)$, $Q_n^{m,k}(\eta) = (\eta^2 - 1)^n P_n^{m-k,m+k}(\frac{\eta^2+1}{\eta^2-1})$ with $P_n^{\alpha,\beta}(x)$ the Jacobi polynomials . $C_k^{s,m} = {2s \choose s-k} {2s \choose s-m+k}$ and $f_{ij} = 2s - m_j - m'_j, 0, 4s - 2m$, $l_{ij} = 0, -1, 1$ for the *oe*, *oo*, *ee* pairs, and $\delta = 0(1)$ if N is even (odd).

¹MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

 Outline
 Motivation
 Factorization
 The XYZ case
 Separable State Engineering
 Conclusions and perspective

 0
 0000
 0000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <

¹ F. C. Alcaraz, and A. L. Malvezzi, J. Phys. A **28**, 1521 (1995).

MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

Magnetization and Entanglement

• Factorizing fields correspond to critical points in the the multidimensional field space $\{h^1, \ldots, h^N\}$.

F. C. Alcaraz, and A. L. Malvezzi, J. Phys. A 28, 1521 (1995).

MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

- Factorizing fields correspond to critical points in the the multidimensional field space $\{h^1, \ldots, h^N\}$.
- In the vicinity of factorization, we can select GSs with any given magnetization .

¹ F. C. Alcaraz, and A. L. Malvezzi, J. Phys. A 28, 1521 (1995). MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

- Factorizing fields correspond to critical points in the the multidimensional field space $\{h^1, \ldots, h^N\}$.
- In the vicinity of factorization, we can select GSs with any given magnetization .
- By applying nontransverse fields, separable ground states can be engineered

¹ F. C. Alcaraz, and A. L. Malvezzi, J. Phys. A 28, 1521 (1995). MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

- Factorizing fields correspond to critical points in the the multidimensional field space $\{h^1, \ldots, h^N\}$.
- In the vicinity of factorization, we can select GSs with any given magnetization .
- By applying nontransverse fields, separable ground states can be engineered

¹ F. C. Alcaraz, and A. L. Malvezzi, J. Phys. A 28, 1521 (1995). MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

 Outline
 Motivation
 Factorization
 The XYZ case
 Separable State Engineering
 Conclusions and perspective

 0
 0000
 0000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <

- Factorizing fields correspond to critical points in the the multidimensional field space $\{h^1,\ldots,h^N\}$.
- In the vicinity of factorization, we can select GSs with any given magnetization .
- By applying nontransverse fields, separable ground states can be engineered

¹ F. C. Alcaraz, and A. L. Malvezzi, J. Phys. A 28, 1521 (1995). MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

Other field configuration

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	000000000	0000	00

How many state / field configurations are there?

¹ MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	000000000	0000	00

How many state / field configurations are there?

¹ MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	000000000	0000	00

How many state / field configurations are there?

¹ MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).

How many state / field configurations are there?

How many state / field configurations are there?

How many state / field configurations are there?

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	00000000	0000	00

For $1 \times N$	1,	2,	4,	8,	16
For $2 imes N$	2,	6,	18,	54,	162
For $3 \times N$	4,	18,	82,	374,	1706

MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017). J. Ginepro, and T.C. Hull, J. Integer Seq. **17**, Art. 14.10.8 (2014).

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	00000000	0000	00

For $1 \times N$	1,	2,	4,	8,	16
For $2 imes N$	2,	6,	18,	54,	162
For $3 \times N$	4,	18,	82,	374,	1706

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES[®]

founded in 1964 by N. J. A. Sloane

The On-Line Encyclopedia of Integer Sequences® (OEIS®)

Enter a sequence, word, or sequence number:

1,2,3,6,11,23,47,106,235

MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017).
 J. Ginepro, and T.C. Hull, J. Integer Seq. **17**, Art. 14.10.8 (2014).

Bonus

For $1 \times N$ 2, 8. 16 1. 6, For $2 \times N$ 2, 18, 54, 162 For $3 \times N$ 4. 18, 82, 374, 1706

Counting Miura-ori Foldings

Jessica Ginepro¹ Department of Mathematics University of Connecticut 196 Auditorium Road, Unit 3009 Storrs, CT 06269-3009 USA Figure 1: A 4×4 Miura-ori with the standard MV assignment. Bold creases are mountains and non-bold creases are valleys.

1 Introduction

In the mathematics of origami (paper folding), enumerating the number of ways in which a crease pattern can fold up is often difficult. Even the seemingly simple postage-stamp

¹ MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. **119**, 220605 (2017). J. Ginepro, and T.C. Hull, J. Integer Seg. **17**, Art. 14.10.8 (2014).

 Outline
 Motivation
 Factorization
 The XYZ case
 Separable State Engineering
 Conclusions and perspective

 0
 0000
 0000
 00000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Bonus

For $1 \times N$ 2, 8. 16 1. 6, For $2 \times N$ 2, 18, 54, 162 For $3 \times N$ 4. 18. 82, 374. 1706

Counting Miura-ori Foldings

Jessica Ginepro¹ Department of Mathematics University of Connecticut 196 Auditorium Road, Unit 3009 Storrs, CT 06269-3009 USA Figure 1: A 4×4 Miura-ori with the standard MV assignment. Bold creases are mountains and non-bold creases are valleys.

1 Introduction

In the mathematics of origami (paper folding), enumerating the number of ways in which a crease pattern can fold up is often difficult. Even the seemingly simple postage-stamp

By defining A(1) = (1) and

$$A(M+1) = \begin{pmatrix} A(M) & A(M)^T \\ 0 & A(M) \end{pmatrix}$$

with $B(M) = A(M) + A(M)^T$, the total number of configurations is

$$L(M,N) = \sum_{i,j} (B^{N-1}(M))_{ij}$$

MC, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017).

J. Ginepro, and T.C. Hull, J. Integer Seq. 17, Art. 14.10.8 (2014).

Separable state engineering

Given a spin system (i.e., given the \mathcal{J}^{ij}) What separable eigenstates can the system posses?

 $\boldsymbol{n}_{i}^{x'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{x'} = \boldsymbol{n}_{i}^{y'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{y'}, \quad \boldsymbol{n}_{i}^{x'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{y'} = -\boldsymbol{n}_{i}^{y'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{x'} \quad (1)$

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Separable state engineering

Given a spin system (i.e., given the \mathcal{J}^{ij}) What separable eigenstates can the system posses?

 $\boldsymbol{n}_{i}^{x'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{x'} = \boldsymbol{n}_{i}^{y'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{y'}, \quad \boldsymbol{n}_{i}^{x'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{y'} = -\boldsymbol{n}_{i}^{y'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{x'} \quad (1)$

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A 94, 042335 (2016).

Separable state engineering

Given a spin system (i.e., given the \mathcal{J}^{ij}) What separable eigenstates can the system posses?

$$\boldsymbol{n}_{i}^{x'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{x'} = \boldsymbol{n}_{i}^{y'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{y'}, \quad \boldsymbol{n}_{i}^{x'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{y'} = -\boldsymbol{n}_{i}^{y'} \cdot \mathcal{J}^{ij} \boldsymbol{n}_{j}^{x'} \quad (1)$$

If some control over the couplings and the fields is feasible, then YES!

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline
oMotivation
oFactorization
oThe XYZ case
oThe XXZ case
oSeparable State Engineering
oConclusions and perspective
o

Properties (I)

• Lemma 1 : Given n_i and n_j arbitraries, there always exists a nonzero XYZ -type coupling: $J^{ij}_{\mu\nu} = J^{ij}_{\mu}\delta_{\mu\nu}$ satisfying (1).

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline
oMotivation
oFactorization
oThe XYZ case
oThe XXZ case
oSeparable State Engineering
oConclusions and perspective
o

Properties (I)

• Lemma 1 : Given n_i and n_j arbitraries, there always exists a nonzero XYZ -type coupling: $J^{ij}_{\mu\nu} = J^{ij}_{\mu}\delta_{\mu\nu}$ satisfying (1).

• Lemma 2 : Given \mathcal{J}^{ij} y n_j , there always exists at least one n_i satisfying (1).

$$\boldsymbol{n}_i = \alpha [\boldsymbol{a} \times \boldsymbol{b} \pm (\eta \lambda_+ \boldsymbol{a} + \lambda_- \boldsymbol{b})],$$

 $a = \mathcal{J}^{ij} n_j^{x'}, b = \mathcal{J}^{ij} n_j^{y'}, \lambda_{\pm}^2 = \frac{\sqrt{(|a|^2 - |b|^2)^2 + 4|a \cdot b|^2} \pm (|a|^2 - |b|^2)}{2}$

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline
oMotivation
oFactorization
oThe XYZ case
oThe XXZ case
oSeparable State Engineering
oConclusions and perspective
o

Properties (I)

• Lemma 1 : Given n_i and n_j arbitraries, there always exists a nonzero XYZ -type coupling: $J^{ij}_{\mu\nu} = J^{ij}_{\mu}\delta_{\mu\nu}$ satisfying (1).

• Lemma 2 : Given \mathcal{J}^{ij} y n_j , there always exists at least one n_i satisfying (1).

$$\boldsymbol{n}_i = \alpha [\boldsymbol{a} \times \boldsymbol{b} \pm (\eta \lambda_+ \boldsymbol{a} + \lambda_- \boldsymbol{b})],$$

 $a = \mathcal{J}^{ij} n_j^{x'}, b = \mathcal{J}^{ij} n_j^{y'}, \lambda_{\pm}^2 = \frac{\sqrt{(|a|^2 - |b|^2)^2 + 4|a \cdot b|^2} \pm (|a|^2 - |b|^2)}{2}$

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

$$\boldsymbol{n}_i = \alpha [\boldsymbol{a} \times \boldsymbol{b} \pm (\eta \lambda_+ \boldsymbol{a} + \lambda_- \boldsymbol{b})]_s$$

 $a = \mathcal{J}^{ij} n_j^{x'}, b = \mathcal{J}^{ij} n_j^{y'}, \lambda_{\pm}^2 = \frac{\sqrt{(|a|^2 - |b|^2)^2 + 4|a \cdot b|^2} \pm (|a|^2 - |b|^2)}{2} \frac{|\mathbf{n}_{j:1}^{*}|}{|\mathbf{n}_{j:3}^{*}|} \frac{|\mathbf{n}_{j:2}^{*}|}{|\mathbf{n}_{j:3}^{*}|} \frac{|\mathbf{n}_{j:3}^{*}|}{|\mathbf{n}_{j:3}^{*}|} \frac{|\mathbf{n}_{j:3}^{*}|}{|} \frac{|\mathbf{n}_{j$

 2^2

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

[•] Lemma 3 : $|\Psi_s\rangle$ can always become a nondegenerate GS of H with a controllable gap . h_i

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A 94, 042335 (2016).
Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	000000000	0000	00

• Lemma 4 : If $s_i = s_j$ and the coupling is of the XYZ -type. Given n_i and n_j , there always exists a uniform factorizing field:

$$oldsymbol{h}^{ij}_{\parallel}+oldsymbol{h}^{ij}_{\perp}=oldsymbol{h}^{ji}_{\parallel}+oldsymbol{h}^{ji}_{\perp}$$

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspective
0	0000	0000	000000	000000000	0000	00

• Lemma 4 : If $s_i = s_j$ and the coupling is of the XYZ -type. Given n_i and n_j , there always exists a uniform factorizing field:

$$oldsymbol{h}^{ij}_{\parallel}+oldsymbol{h}^{ij}_{\perp}=oldsymbol{h}^{ji}_{\parallel}+oldsymbol{h}^{ji}_{\perp}$$

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspectiv
0	0000	0000	000000	000000000	0000	00

• Lemma 4 : If $s_i = s_j$ and the coupling is of the XYZ -type. Given n_i and n_j , there always exists a uniform factorizing field:

$$oldsymbol{h}^{ij}_{\parallel}+oldsymbol{h}^{ij}_{\perp}=oldsymbol{h}^{ji}_{\parallel}+oldsymbol{h}^{ji}_{\perp}$$

We can now think of **bulk** separable state engineering.

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline	Motivation	Factorization	The XYZ case	The XXZ case	Separable State Engineering	Conclusions and perspectiv
0	0000	0000	000000	000000000	0000	00

• Lemma 4 : If $s_i = s_j$ and the coupling is of the XYZ -type. Given n_i and n_j , there always exists a uniform factorizing field:

$$oldsymbol{h}^{ij}_{\parallel}+oldsymbol{h}^{ij}_{\perp}=oldsymbol{h}^{ji}_{\parallel}+oldsymbol{h}^{ji}_{\perp}$$

We can now think of **bulk** separable state engineering.

■ Lemma 5 : Pairwise entanglement reaches full range in the vicinity of factorization. → Quantum critical point.

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

Outline
oMotivation
occoFactorization
occoThe XYZ case
occoThe XXZ case
occoSeparable State Engineering
occoConclusions and perspective
occo

Fixed and tunable couplings

Tunable couplings

Fixed couplings

¹ MC, R. Rossignoli, and N. Canosa, Phys. Rev. A **94**, 042335 (2016).

 Outline
 Motivation
 Factorization
 The XYZ case
 Separable State Engineering
 Conclusions and perspective

Conclusions and perspectives

• General conditions for the existence of separable eigenstates in spin arrays.

 Outline
 Motivation
 Factorization
 The XYZ case
 Separable State Engineering
 Conclusions and perspective

- General conditions for the existence of separable eigenstates in spin arrays.
- Obtain analytical results in factorization points and lines.

 Outline
 Motivation
 Factorization
 The XYZ case
 Separable State Engineering
 Conclusions and perspective

- General conditions for the existence of separable eigenstates in spin arrays.
- Obtain analytical results in factorization points and lines.
- Determine new critical behaviour .

 Outline
 Motivation
 Factorization
 The XYZ case
 The XXZ case
 Separable State Engineering
 Conclusions and perspective

- General conditions for the existence of separable eigenstates in spin arrays.
- Obtain analytical results in factorization points and lines.
- Determine new critical behaviour .
- Factorization feasible with simple architectures .

 Outline
 Motivation
 Factorization
 The XYZ case
 The XXZ case
 Separable State Engineering
 Conclusions and perspective

- General conditions for the existence of separable eigenstates in spin arrays.
- Obtain analytical results in factorization points and lines.
- Determine new critical behaviour .
- Factorization feasible with simple architectures .
- Engineer separable ground states .

 Outline
 Motivation
 Factorization
 The XYZ case
 The XXZ case
 Separable State Engineering

 0
 0000
 0000
 00000000
 0000
 0000

Conclusions and perspective

Thanks for your attention!

allook

Our works:

M. Cerezo, R. Rossignoli, N. Canosa, and E. Rios, Phys. Rev. Lett. 119, 220605 (2017). M. Cerezo, R. Rossignoli, and N. Canosa, Phys. Rev. A 94, 042335 (2016). M. Cerezo, R. Rossignoli, and N. Canosa, Phys. Rev. B 92, 224422 (2015).