Heat transport in a superconducting quantum chain

Antônio M. S. Macêdo and Oscar Bohórquez

DEPARTAMENTO DE FSICA UNIVERSIDADE FEDERAL DE PERNAMBUCO

Workshop Exactly Solvable Quantum Chains - IIF - Natal

Consider a typical problem of charge, heat or spin transfer through a phase coherent device. There are universal relations, integrability conditions and very powerful mathematical structures that can be explored to find exact analytical solutions to certain problems.

Fig. 1. A pictorial representation of a typical two-probe quantum transport setup. The letters have the following meaning: N = normal metal, S = superconductor, F = ferromagnet.

We consider a chain of Andreev quantum billiards connected ideally to two metal electrodes at different temperatures. A sign change of the superconducting pair potential is assumed to close the excitation gap inside the billiard without breaking TR symmetry.

The ten-fold way

In the 1960's Freeman Dyson proposed a general classification of complex quantum systems in terms of certain symmetry properties of the Hamiltonian. It became known as the "three-fold way". Later, additional symmetries and constraints extended Dyson's classification to ten symmetry classes

- Wigner-Dyson Class (WD)
- Ø Bogoliubov-de Gennes Class (BdG)
- Ohiral Class (Chiral)

Class	\mathbf{TR}	\mathbf{SR}
	Yes	Yes
WD	No	Yes/No
	Yes	No
Chiral	Yes	Yes
	No	Yes/No
	Yes	No
BdG	Yes	Yes
	No	Yes
	Yes	No
	No	No

There is another three-fold way related to three different, but equivalent approaches

Fig. 2. Different approaches to quantum transport and their mutual relationships: The nonlinear σ -model, random matrix theory (RMT) and the trajectory-based semiclassical approach.

How to use the classification?

Suppose you want to calculate the conductance distribution of a disordered quantum wire with N open scattering channels, then

$$\mathcal{P}(g,t) = \int \prod_{i=1}^{N} d\tau_i \delta(g - \sum_{i=1}^{N} \tau_i) P_{\alpha\beta\gamma}(\{\tau\},t), \qquad (1)$$

where t is the length of the wire. Now parametrize $\tau_i = \operatorname{sech}^2(2q_i)$, then

$$\frac{\partial P_{\alpha\beta\gamma}}{\partial t} = \sum_{i=1}^{N} \left(-\frac{\partial}{\partial q_i} \frac{\partial \ln J_{\alpha\beta\gamma}}{\partial q_i} + \frac{\partial^2}{\partial q_i^2} \right) P_{\alpha\beta\gamma}, \tag{2}$$

with $J_{\alpha\beta\gamma}$ given by

$$J_{\alpha\beta\gamma}(\{q\}) = \prod_{j=1}^{N} |\sinh^{\alpha}(2q_{j})| \prod_{1 \le i < j \le N} \left| \sinh^{\beta}(q_{i} - q_{j}) \sinh^{\gamma}(q_{i} + q_{j}) \right|.$$
(3)

The symmetry parameters

The symmetry parameters $\alpha,\,\beta$ and γ can be read from the table

Class	\mathbf{TR}	\mathbf{SR}	lpha	$oldsymbol{eta}$	γ
	Yes	Yes	1	1	1
WD	No	Yes/No	1	2	2
	Yes	No	1	4	4
	Yes	Yes	0	1	0
Chiral	No	Yes/No	0	2	0
	Yes	No	0	4	0
	Yes	Yes	2	2	2
BdG	No	Yes	2	2	2
240	Yes	No	0	2	2
	No	No	0	1	1

Universality Classes and Symmetry Parameters

→ < Ξ → < Ξ →</p>

There is an alternative classification using matrix-valued Brownian motion [A.F. Macedo-Junior and AMSM, Nucl. Phys. B 752, 439 (2006)]. We rewrite the Fokker-Planck equation as

$$\frac{\partial P}{\partial t} = \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(J_N w_N s(x_i) \frac{\partial}{\partial x_i} \frac{1}{J_N w_N} \right) P \tag{4}$$

where

$$J_N(\{x\}) = \prod_{i < j} |x_i - x_j|^{\beta}, \quad w_N(\{x\}) = \prod_{i=1}^N w(x_i)$$
(5)

The stationary solution

$$P_{st}(\{x\}) = C_N J_N(\{x\}) w_N(\{x\})$$
(6)

• • = • • = •

An alternative classification

The functions w(x), s(x) and $r(x) \equiv \frac{1}{w(x)} \frac{d}{dx} w(x) s(x)$ are obtained from the table.

Ensemble	w(x)	s(x)	r(x)	Interval	
Hermite	e^{-x^2}	1	-2x	$(-\infty,\infty)$	
Laguerre	$x^{\nu}e^{-x} \ (\nu > -1)$	x	$1 + \nu - x$	$[0,\infty)$	
Jacobi	$(1-x)^{\nu}(1+x)^{\mu} \ (\nu,\mu>-1)$	$1-x^2$	$\mu - \nu - (2 + \mu + \nu)x$	$\left[-1,1 ight]$	
SM-WD	$x^{\beta/2-1}$	x(1-x)	$\beta(1-x)/2 - x$	[0, 1]	
SM-Chiral	$(1-x^2)^{\beta/2-1}$	$1-x^2$	$-\beta x$	[-1,1]	
$\mathrm{SM} ext{-}\mathrm{BdG}$	$x^{\beta/2-1}(1-x)^{\gamma/2} \ (\gamma = -1, 1)$	x(1-x)	$\beta(1-x)/2 - x(\gamma/2+1)$	[0,1]	
TM-WD	1	$x^{2} - 1$	2x	$[1,\infty)$	
TM-Chiral	$x^{[(1-N)\beta-2]/2}$	x^2	$[1-\beta(N-1)/2]x$	$[1,\infty)$	
TM-BdG	$(x^2-1)^{(\alpha-1)/2} \ (\alpha=0,2)$	$x^{2} - 1$	$(1+\alpha)x$	$[1,\infty)$	

米部 とくぼと 不足と 一足

It is possible to derive an effective Schrödinger equation via the similarity transformation $P(\{x\}, it) = w_N J_N^{1/2} \Psi(\{x\}, t)$. The integrable effective Hamiltonian is of Calogero-Sutherland-Moser type

$$\mathcal{H} = \sum_{i=1}^{N} \frac{1}{w(x_i)} \frac{\partial}{\partial x_i} \left(w(x_i) s(x_i) \frac{\partial}{\partial x_i} \right) + \frac{\beta(\beta - 2)}{4} \sum_{i \neq j} \frac{s(x_i)}{(x_i - x_j)^2} + V_0$$
(7)

The exact eigenfunctions and eigenvalues of \mathcal{H} can be obtained via the transformation $\Psi = J_N^{1/2} \Phi$. For the classical random-matrix ensembles the function Φ yields Jack-type multivariate extensions of the classical orthogonal polynomials.

圖▶ ★唐▶ ★唐▶ - 唐

Integral Transform and Dual FP

In order to calculate averages, it is useful to perform the integral transform

$$W(\{\nu\},t) = \int d^{N}x \prod_{i=1}^{N} \frac{\prod_{k=1}^{n_{0}} (x_{i} - \nu_{0k})}{\prod_{l=1}^{n_{1}} (x_{i} - \nu_{1l})^{\beta/2}} P(\{x\},t),$$
(8)

where n_0 and n_1 are positive integers satisfying $\beta n_1 = 2n_2$. The image functions satisfies a dual FP equation

$$\frac{\partial W}{\partial t} = \frac{1}{VB} \left[\sum_{l=1}^{n_1} \frac{\partial}{\partial \nu_{1l}} s(\nu_{1l}) VB \frac{\partial}{\partial \nu_{1l}} - \frac{\beta}{2} \sum_{k=1}^{n_0} \frac{\partial}{\partial \nu_{0k}} s(\nu_{0k}) VB \frac{\partial}{\partial \nu_{0k}} \right] W$$
$$V \equiv \prod_{k=1}^{n_0} w_0(\nu_{0k}) \prod_{l=1}^{n_1} w_1(\nu_{1l}); \quad w_0(\nu) = \frac{w^{2/\beta}(\nu)}{s^{1-2/\beta}(\nu)}; w_1(\nu) = \frac{s^{\beta/2-1}(\nu)}{w(\nu)}$$
$$B \equiv \prod_{k$$

It is possible to derive an effective Schrdinger equation for the dual FP equation via the similarity transformation $W(\{\nu\}, it) = B^{-1/2}\Psi(\{\nu\}, t)$. The integrable effective dual Hamiltonian is also of Calogero-Sutherland Moser type. We write $\mathcal{H} = \mathcal{H}_0 + \mathcal{V}$, where

$$\mathcal{H}_{0} = \sum_{l=1}^{n_{1}} \frac{1}{w_{1}(\nu_{1l})} \frac{\partial}{\partial \nu_{1l}} w_{1}(\nu_{1l}) s(\nu_{1l}) \frac{\partial}{\partial \nu_{1l}} - \frac{\beta}{2} \sum_{k=1}^{n_{0}} \frac{1}{w_{0}(\nu_{0k})} \frac{\partial}{\partial \nu_{0k}} w_{0}(\nu_{0k}) s(\nu_{0k}) \frac{\partial}{\partial \nu_{0k}}$$
$$\mathcal{V} = \frac{2-\beta}{\beta} \sum_{k \neq k'} \frac{s(\nu_{0k})}{(\nu_{0k} - \nu_{0k'})^{2}} + \frac{\beta(2-\beta)}{4} \sum_{l \neq l'} \frac{s(\nu_{1l})}{(\nu_{1l} - \nu_{1l'})^{2}} + \frac{\beta-2}{2} \sum_{k,l} \frac{s(\nu_{0k}) + s(\nu_{1l})}{(\nu_{0k} - \nu_{1l'})^{2}} + \mathcal{V}_{0}$$

The construction of the eigenfunctions proceeds mutatis mutandis and yields, for the classical ensembles, deformed versions of the multivariate classical polynomials.

□→ ★ 周 → ★ 周 → 二 国

We consider a chain of Andreev quantum billiards connected ideally to two metal electrodes at different temperatures. A sign change of the superconducting pair potential is assumed to close the excitation gap inside the billiard without breaking TR symmetry.

The model system

The dimensionless heat conductance can be written as $g = \sum_i \tau_i$, where τ_i are the transmission eigenvalues, i.e. the eigenvalues of tt^{\dagger} , where t is the transmission matrix. We want to calculate the first three moments of g, which are given by

$$\langle g^m \rangle = \int \prod_{i=1}^N d\tau_i (\sum_{i=1}^N \tau_i)^m P(\{\tau\}).$$

For a single Andreev quantum dot coupled to two reservoirs via ideal contacts with N_1 and N_2 open channels, we can use a maximum entropy principle to obtain

$$P_{dot}(\{\tau\}) = C_N \prod_{i < j} |\tau_i - \tau_j|^{\beta} \prod_i \tau_i^{\beta(\mu+1)/2 - 1} (1 - \tau_i)^{\gamma/2},$$

where $\mu = |N_1 - N_2|$ and the symmetry parameters β and γ can be obtained from the classification tables.

Taking the continuum limit we obtain a FP initial value problem in the standard coordinates

$$\frac{\partial P}{\partial t} = \sum_{i}^{N} \frac{\partial}{\partial x_{i}} s(x_{i}) \omega_{N} J_{\beta} \frac{\partial}{\partial x_{i}} \frac{P}{\omega_{N} J_{\beta}}$$
(9)
$$P(\{x\}, t = 0) = P_{dot}(\{x\})$$

RMT	Random variable	$\omega(x)$	s(x)	a	b
SM	$x_i = \tau_i$	$x^{\beta(\mu+1)/2-1}(1-x)^{\gamma/2}$	x(1-x)	0	1
TM	$x_i = 2/\tau_i - 1$	$(x^2 - 1)^{(\alpha - 1)/2}$	$x^2 - 1$	1	∞

▲□▶ ▲圖▶ ▲園▶ ▲園▶ ― 園

The integral transform

We may now perform the integral transform

$$W(\{\vartheta\}, t) = \int d^{N}x \prod_{i}^{N} \frac{x_{i} - \vartheta_{0,1}}{x_{i} - \vartheta_{1,1}} P(\{x\}, t)$$
(10)

The dual FP equation is

$$\frac{\partial W}{\partial t} = \frac{1}{VB} \sum_{i=0}^{1} (-1)^{1+i} \frac{\partial}{\partial \vartheta_{i,1}} \left(s(\vartheta_{i,1}) VB \frac{\partial}{\partial \vartheta_{i,1}} \right) W$$
(11)

where

$$V = rac{\omega(artheta_{0,1})}{\omega(artheta_{1,1})} \quad ext{and} \quad B = rac{1}{(artheta_{0,1} - artheta_{1,1})^2}$$
(12)

$$W(\{\vartheta\}, t=0) = \int d^N x \prod_i^N \frac{x_i - \vartheta_{0,1}}{x_i - \vartheta_{1,1}} P_{dot}(\{x\})$$
(13)

過 ト イヨ ト イヨト

Hamiltonian Formulation

We may now map the FP equation onto an effective Schrödinger equation

$$W(\{\vartheta\}, t) = 1 + \omega(\vartheta_{1,1})B^{-1/2}\Psi(\{\vartheta\}, t)$$
(14)

$$\frac{\partial \Psi}{\partial t} + \mathcal{H}\Psi = 0; \quad \mathcal{H} = \sum_{i=0}^{1} (-1)^{i} \frac{1}{\omega(\vartheta_{i})} \frac{\partial}{\partial \vartheta_{i}} \left(\omega(\vartheta_{i}) s(\vartheta_{i}) \frac{\partial}{\partial \vartheta_{i}} \right)$$
(15)

The complete set of eigenfunctions are given by

$$\varphi_{nk}(\vartheta_0,\vartheta_1) = \frac{A_k^{(-\nu)}}{(h_n^{(\nu)})^{1/2}} P_n^{(\nu)}(\vartheta_0) \frac{F_k^{(-\nu)}(\vartheta_1)}{\omega(\vartheta_i)}; \quad n = 0, \dots; \ k \ge 0, \quad (16)$$

where $F_k^{(\nu)}(\vartheta_1) = F[\nu + \frac{1}{2} + ik, \nu + \frac{1}{2} - ik; \nu + 1; \frac{1 - \vartheta_1}{2}]$ and

$$h_n^{(\nu)} = \frac{2^{2\nu+1}(\Gamma(n+\nu+1))^2}{n!(2n+2\nu+1)\Gamma(n+2\nu+1)}; \quad (A_k^{(\nu)})^2 = \frac{|\Gamma(\nu+1/2+ik)|^2}{2^{2\nu}(\Gamma(\nu+1))^2|\Gamma(ik)|^2}$$

(本部) (本語) (本語) (注語)

The initial condition can be written in the dual space as follows

$$W(\vartheta_{0},\vartheta_{1}) = 1 + (\vartheta_{0} - \vartheta_{1}) \sum_{l=0}^{N-1} \frac{(1 - \vartheta_{0})^{l}}{(1 - \vartheta_{1})^{l+1}} (f_{N-l-1}(\vartheta_{0})g_{N-l-1}(\vartheta_{1}) - 1)$$
(17)

where

$$f_{n}(\vartheta_{0}) = F[-n, -n-\mu; -2n-\mu - \frac{\gamma}{2}; \frac{1-\vartheta_{0}}{2}]$$

$$g_{n}(\vartheta_{1}) = F[n+1, n+1+\mu; 2n+\mu + \frac{\gamma}{2}+2; \frac{1-\vartheta_{1}}{2}]$$
(18)

and F[a, b; c; d] is the Gauss hypergeometric function.

(本部) (本語) (本語) (二語

With the eigenfunctions we can construct the propagator or Green's function

 $G(\{\vartheta\},\{\vartheta'\},t) = (1-\vartheta_0^{\prime 2})^{\nu}(\vartheta_1^{\prime 2}-1)^{\nu}\sum_{n=0}^{\infty}\int_0^{\infty} dk\varphi_{nk}(\vartheta_0,\vartheta_1)\varphi_{nk}(\vartheta_0^{\prime},\vartheta_1^{\prime})e^{-\varepsilon_{nk}t}$ where $\varepsilon_{nk} = k^2 + (n+\nu+1/2)^2$ are the eigenvalues. By construction

$$G(\{\vartheta\},\{\vartheta'\},0) = \delta(\vartheta_0 - \vartheta'_0)\delta(\vartheta_1 - \vartheta'_1)$$
(19)

The complete solution is then given by

$$W(\{artheta\},t) = 1 + (artheta_0 - artheta_1)\omega(artheta_1)\int_{-1}^1 dartheta_0'\int_1^\infty dartheta_1' G(\{artheta\},\{artheta'\},t)rac{W(\{artheta'\},0)}{(artheta_0'-artheta_1')\omega(artheta_1')}e^{-arepsilon_{nk}t}$$

→ ■ ▶ ★ 国 ▶ ★ 国 ▶ → 国 → の Q @

The integrals over the Green's function can be performed by using identities from the theory of Meijer G functions. We find the explicit solution

$$W(\vartheta_0,\vartheta_1,t) = 1 + 2(\vartheta_0 - \vartheta_1) \sum_{n=0}^{N-1} \frac{P_n^{(\nu)}(\vartheta_0) P_n^{(\nu)}(1)}{h_n^{(\nu)}} \int_0^\infty d\mu_{nk} c_{nk}^{(\nu)}(N_1) c_{nk}^{(\nu)}(N_2) F_k^{(-\nu)}(\vartheta_1) e^{-\varepsilon_{nk}t}$$

where

$$d\mu_{nk} = dk |\Gamma(1/2 - \nu + ik)|^2 / (|\Gamma(ik)|^2 \varepsilon_{nk})$$

and

$$c_{nk}^{(\nu)}(N) = \frac{|\Gamma(N+\nu+1/2+ik)|^2}{(N-n-1)!\Gamma(N+n+2\nu+1)}$$
(20)

· · · · · · · · ·

The conductance moments

The function W can be interpreted as a generating function. Thus

$$\langle g \rangle = \frac{2\partial W}{\partial \vartheta_0} \bigg|_{\vartheta_0 = 1 = \vartheta_1} \quad \langle g^2 \rangle = -\frac{4\partial^2 W}{\partial \vartheta_0 \partial \vartheta_1} \bigg|_{\vartheta_0 = 1 = \vartheta_1}$$
(21)

$$\langle g^3 \rangle = 4 \left(\frac{\partial^3 W}{\partial \vartheta_0 \partial \vartheta_1^2} - \frac{\partial^3 W}{\partial \vartheta_1 \partial \vartheta_0^2} \right) \bigg|_{\vartheta_0 = 1 = \vartheta_1}$$

$$\langle g^{m} \rangle = 4 \sum_{n=0}^{N-1} \frac{(P_{n}^{(\nu)}(1))^{2}}{h_{n}^{(\nu)}} \int_{0}^{\infty} d\mu_{nk} g_{nk}^{(m)} c_{nk}^{(\nu)}(N_{1}) c_{nk}^{(\nu)}(N_{2}) e^{-\varepsilon_{nk}t}$$
(22)

where

 $g_{nk}^{(3)}$

$$g_{nk}^{(1)} = 1, \quad g_{nk}^{(2)} = \frac{\left(k^2 + \left(1/2 - \nu\right)^2\right)}{\left(1 - \nu\right)} + \frac{n(n + 2\nu + 1)}{\left(1 + \nu\right)},$$

$$(23)$$

$$= \frac{(k^2 + (1/2 - \nu)^2)(k^2 + (3/2 - \nu)^2)}{2(2 - \nu)(1 - \nu)} + \frac{2n(n + 2\nu + 1)(k^2 + (1/2 - \nu)^2)}{(1 + \nu)(1 - \nu)} + \frac{n(n - 1)(n + 2\nu + 1)(n + 2\nu + 2)}{2(1 + \nu)(2 + \nu)}$$

 $2(1+\nu)(2+\nu)$

It is useful to study the behavior of the conductance cumulants for a very long wire. We find for the classes DIII (TR and no SR) and CI (TR and SR) the following results

$$\langle g \rangle = \frac{3}{2} \langle \langle g^2 \rangle \rangle = \frac{15}{8} \langle \langle g^3 \rangle \rangle = \frac{2}{\sqrt{\pi t}}, \quad \text{(no localization)}$$
(24)
$$\langle g \rangle = t \langle \langle g^2 \rangle \rangle = 3t \langle \langle g^3 \rangle \rangle = 4c_{00}^{(1/2)}(N_1)c_{00}^{(1/2)}(N_2)\frac{e^{-t}}{\sqrt{\pi t}},$$
(25)

which should be contrasted with the corresponding results for a normal wire

$$\langle g \rangle = 4 \langle \langle g^2 \rangle \rangle = \frac{64}{9} \langle \langle g^3 \rangle \rangle = 2 c_{00}^{(0)}(N_1) c_{00}^{(0)}(N_2) \left(\frac{\pi}{t}\right)^{3/2} e^{-t/4}$$
 (26)

Conductance cumulants N=1 (Majorana mode)

Conductance Cumulants

- We obtain exact expressions for the first three moments of the heat conductance of a quantum chain that crosses over from a superconducting quantum dot to a superconducting disordered quantum wire.
- The striking effect of total suppression of the insulating regime in systems with broken spin-rotation invariance is observed at large length scales and for for a single mode topological superconductor it can be interpreted as a signature of Majorana modes.
- The powerful mathematical structure of our solution may prove useful in establishing equivalence proofs between the various non-perturbative approaches to quantum transport problems.