Supersymmetry

The eight-vertex model

Result and proof 000 00000000 000000000 Open case

Conclusion 00

The XYZ spin-chain, the eight-vertex model and supersymmetry

Exactly solvable quantum chains – Natal, 29/06/2018

JEAN LIÉNARDY Joint work with C. Hagendorf

Х	Y	Ζ			
0	0	0	0	0	0

Supersymmetry 000000000 The eight-vertex model

Result and proof 000 0000000 00000000 Open case

Conclusion

arXiv:1711.04397 - J. Stat. Mech. (2018) 033106

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusio
000000	00000000	00000	000 00000000 000000000	0000000	00

Outline

- 1 The XYZ spin-chain
- 2 Supersymmetry
- The eight-vertex model
- 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue

5 Open case

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusio
000000	00000000	00000	000 00000000 000000000	0000000	00

Outline

- The XYZ spin-chain
- 2 Supersymmetry
- 3 The eight-vertex model
- 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue
- 5 Open case

6 Conclusion

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusio
•00000	00000000	00000	000 0000000 00000000	000000	00

Notation

Hilbert space:

Site:
$$V_i = \mathbb{C}^2 = \operatorname{span}(|\uparrow\rangle, |\downarrow\rangle)$$
 with $|\uparrow\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}, |\downarrow\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$

Chain of L sites: $V^L = V_1 \otimes V_2 \otimes \cdots \otimes V_L$ Configuration: canonical basis of V^L

$$|s_1s_2\ldots s_L\rangle = |s_1\rangle\otimes |s_2\rangle\otimes \cdots\otimes |s_L\rangle, \quad |s_i\rangle = |\uparrow\rangle, |\downarrow\rangle$$

XYZ Supersyr 000000 000000 The eight-vertex model

Open case

Conclusion

XYZ spin-chain Hamiltonian

XYZ Hamiltonian with periodic b.c.

$$H_{XYZ} = \sum_{j=1}^{L} h_{j,j+1}$$

with anisotropy parameters J_x, J_y and J_z

$$h_{j,j+1} = \frac{-1}{2} \left(J_x \sigma_j^x \sigma_{j+1}^x + J_y \sigma_j^y \sigma_{j+1}^y + J_z \sigma_j^z \sigma_{j+1}^z \right)$$

The σ_i^{α} is the Pauli matrix σ^{α} acting on V_i ,

$$\sigma_{L+1}^{\alpha} = \sigma_1^{\alpha}, \quad \alpha = x, y, z.$$

Spectrum: $E_0 < E_1 < E_2 < \cdots$

Supersymmetry 000000000 The eight-vertex model

Result and proof 000 00000000 000000000 Open case 0000000 Conclusion

Large *L* limit

Theorem

If the anistropy parameters obey the relation

$$J_x J_y + J_x J_z + J_y J_z = 0, \quad J_x + J_y + J_z > 0$$

then the ground-state energy per site satisfies

$$\lim_{L\to\infty}\frac{E_0}{L}=-\frac{1}{2}(J_x+J_y+J_z).$$

"[...] which is a remarkably simple result!"

[Baxter '72]

Supersymmetry 000000000 The eight-vertex model

Result and proof 000 00000000 000000000 Open case 0000000 Conclusion

For finite chains

Conjecture

If the anisotropy parameters obey the relation

$$J_xJ_y+J_xJ_z+J_yJ_z=0,\quad J_x+J_y+J_z>0$$

and L = 2n + 1 is odd, then the ground-state energy is

$$E_0 = -\frac{1}{2}(2n+1)(J_x + J_y + J_z).$$

The importance of being odd !

[Stroganov '01, Razumov & Stroganov '10]

XYΖ	Supersymmetry
000000	000000000

Open case 0000000 Conclusion

Why is $J_x J_y + J_x J_z + J_y J_z = 0$ interesting ?

XXZ limit: $J_x = J_y = 1$, $J_z = -1/2$

- XXZ spin-chain at $\Delta=-1/2$
- The finite-size ground-state is related to enumerative combinatorics
- Exact finite-size correlation functions

"The values $\Delta=\pm 1/2$ are truly exceptional"

[de Gier, Batchelor, Nienhuis, di Fransesco, Zinn-Justin, Cantini...]

XYZ case

- Ground states \leftrightarrow Painlevé VI equation
- Combinatorics
- Supersymmetry

[Bazhanov, Mangazeev, Rosengren, Zinn-Justin, Fendley, Hagendorf...]

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
00000	00000000	00000	000 0000000 00000000	0000000	00

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 0000000 00000000	000000	00

Outline

- 1 The XYZ spin-chain
- 2 Supersymmetry
 - 3 The eight-vertex model
- 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue
- 5 Open case

6 Conclusion

XYZ 000000	Supersymmetry •0000000	The eight-vertex model	Result and proof 000 00000000 000000000	Open case 0000000	Conclusion 00

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusio
000000	00000000	00000	000	0000000	00
			0000000000		

Supersymmetry

 $\mathcal{N}=2$ supersymmetric quantum mechanics:

Supercharges: $\mathfrak{Q}, \, \mathfrak{Q}^{\dagger}$

verifying

$$\mathfrak{Q}^2 = (\mathfrak{Q}^{\dagger})^2 = 0, \quad {\{\mathfrak{Q}, \mathfrak{Q}^{\dagger}\}} = H.$$

Properties:

- non-negative energy $(E \ge 0)$,
- zero-energy state ($H|\psi
 angle=$ 0) verifies

$$\mathfrak{Q}|\psi
angle=\mathsf{0},\quad \mathfrak{Q}^{\dagger}|\psi
angle=\mathsf{0}.$$

Zero-energy states are called supersymmetry singlets.

• A zero-energy state is in $ker(\mathfrak{Q})$ but not in $im(\mathfrak{Q})$.

Z	Supersymmetry
0000	000000000

Result and proof 000 0000000 000000000 Open case

Conclusion

Supersymmetry II.

Quotient space $\mathcal{H}(\mathfrak{Q}) = \frac{\ker \ (\mathfrak{Q})}{\operatorname{im} \ (\mathfrak{Q})}$

Elements of $\mathcal{H}(\mathfrak{Q})$ are equivalence classes of vectors in ker{ \mathfrak{Q} }. Representatives of the classes: $[|\phi\rangle] = [|\phi\rangle + \mathfrak{Q}|\alpha\rangle].$

$$\mathcal{H}(\mathfrak{Q}^{\dagger}) = rac{\mathrm{ker}\,\,(\mathfrak{Q}^{\dagger})}{\mathrm{im}\,\,(\mathfrak{Q}^{\dagger})}$$

Representatives of the classes: $[|\phi\rangle] = [|\phi\rangle + \mathfrak{Q}^{\dagger}|\beta\rangle].$

7	Supersymmetry
0000	000000000

Result and proof 000 00000000 000000000 Open case

Conclusion 00

Supersymmetry III.

Theorem

The space of solutions to

$$\mathfrak{Q}|\psi
angle=\mathsf{0},\quad\mathfrak{Q}^{\dagger}|\psi
angle=\mathsf{0}$$

is isomorphic to $\mathcal{H}(\mathfrak{Q}) \simeq \mathcal{H}(\mathfrak{Q}^{\dagger}).$

- The degeneracy of E = 0 is dim $\mathcal{H}(\mathfrak{Q})$.
- If $|\psi\rangle$ is the representative of a non-zero element of $\mathcal{H}(\mathfrak{Q})$, then there exists (a non unique) $|\alpha\rangle$ such that

$$|\psi_{\mathbf{0}}\rangle = |\psi\rangle + \mathfrak{Q}|\alpha\rangle$$

is a zero-energy state (proof: Hodge decomposition).

[Witten, '82]

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 0000000 00000000	0000000	00

YZ	Supersymmet
00000	000000000

Result and proof 000 0000000 00000000 Open case

Conclusion 00

XYZ and the supersymmetry I.

γ

Local supercharge $\mathfrak{q}: V \to V^2$

$$\mathfrak{q}|\uparrow
angle=0, \quad \mathfrak{q}|\downarrow
angle=|\uparrow
angle\otimes|\uparrow
angle-\zeta|\downarrow
angle\otimes|\downarrow
angle$$

Let S be the translation operator acting on V^L :

$$S|s_1s_2\ldots s_L\rangle = |s_Ls_1\ldots s_{L-1}\rangle,$$

we define \mathfrak{q}_1 as \mathfrak{q} acting on the first site

$$\mathfrak{q}_1=\mathfrak{q}\otimes 1\otimes \cdots \otimes 1$$

and q_j for $j = 0, \ldots, L$ by

$$\mathfrak{q}_j = \mathcal{S}^{j-1}\mathfrak{q}_1\mathcal{S}^{1-j}.$$

ΥZ	Supersymmetry
00000	0000000000

Result and proof 000 0000000 00000000 Dpen case

Conclusion

XYZ and the supersymmetry II.

Construction of the supercharge

• On W^L , the subspace of alternate-cyclic states,

$$\mathcal{W}^{L} = \{ |\psi\rangle \in \mathcal{V}^{L} | \mathcal{S} | \psi
angle = (-1)^{L+1} | \psi
angle \}$$

$$\mathfrak{Q} = \sqrt{\frac{L}{L+1}} \sum_{j=0}^{L} (-1)^j \mathfrak{q}_j$$

2 On $V^L \setminus W^L$, $\mathfrak{Q} = 0$

Its adjoint is \mathfrak{Q}^{\dagger} : $\langle \psi | \mathfrak{Q}^{\dagger} | \phi \rangle = (\langle \phi | \mathfrak{Q} | \psi \rangle)^*$. The supercharges \mathfrak{Q} and \mathfrak{Q}^{\dagger} are length-changing operators

$$\mathfrak{Q}: V^{L} \to V^{L+1}, \quad \mathfrak{Q}^{\dagger}: V^{L} \to V^{L-1},$$

 \mathfrak{Q} and \mathfrak{Q}^{\dagger} maps W^{L} onto W^{L+1} and W^{L-1} , respectively.

YΖ	Supersymmetry
00000	000000000

Result and proof 000 0000000 00000000 Dpen case

Conclusion

XYZ and the supersymmetry III.

The supercharge is nilpotent

The supercharge and its adjoint satisfy

$$\mathfrak{Q}^2=0,\quad (\mathfrak{Q}^\dagger)^2=0.$$

The XYZ Hamiltonian is supersymmetric on W^L

$$\{\mathfrak{Q},\mathfrak{Q}^{\dagger}\} = \begin{cases} H_{XYZ} + L(3+\zeta^2)/4 & \text{on } W^L \\ 0 & \text{on } V^L \backslash W^L \end{cases}$$

with

$$J_x = 1 + \zeta, \ J_y = 1 - \zeta, \ J_z = \frac{1}{2}(\zeta^2 - 1).$$
 (*)

 $(\star) \Leftrightarrow J_X J_y + J_X J_z + J_y J_z = 0, \quad J_X + J_y + J_z > 0.$ [Fendley & Yang '04], [Fendley & Hagendorf '10, '12]

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 0000000 000000000	0000000	00

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	0000000	00000	000 0000000 00000000	0000000	00

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 00000000 000000000	000000	00

Outline

- The XYZ spin-chain
- 2 Supersymmetry
- The eight-vertex model
 - 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue
- 5 Open case

6 Conclusion

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	●0000	000 0000000 00000000	0000000	00

XYZ	Supersymmetry
000000	000000000

Result and proof 000 0000000 00000000 Open case 0000000 Conclusion 00

The eight-vertex model

- Square lattice with L = 2n + 1 vertical lines
- All edges are oriented
- Generalised ice-rule at each vertex
- Periodic boundary conditions along the horizontal direction

ΥZ	Supersymmetry
00000	000000000

X

The eight-vertex model

Result and proof 000 00000000 000000000

٠

Open case

Conclusion

The *R*-matrix and the transfer matrix

The *R*-matrix encodes the weights:
$$i - \int_{j}^{j'} i' := \langle i', j' | R | i, j \rangle$$

As a matrix, in the basis of $V\otimes V$, we have

$$R = \begin{pmatrix} a & 0 & 0 & d \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ d & 0 & 0 & a \end{pmatrix}$$

Transfer matrix for L vertical lines and periodic b.c.

$$\mathcal{T} = \operatorname{tr}_0 \left(R_{0L} R_{0L-1} \cdots R_{01} \right)$$

Here, R_{0j} is the *R*-matrix acting on V_0 and V_j in $V_0 \otimes V^L$.

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 00000000 000000000	000000	00

Transfer matrix

Commutation relation between H_{XYZ} and \mathcal{T} $[H_{XYZ}, \mathcal{T}] = 0$ provided that $J_x = 1 + \zeta, \quad J_y = 1 - \zeta, \quad J_z = \frac{a^2 + b^2 - c^2 - d^2}{2ab}, \quad \zeta = \frac{cd}{ab}$

[Sutherland '70]

For the special case $J_x J_y + J_x J_z + J_y J_z = 0$, we find the

supersymmetric eight-vertex model

The vertex weights are related by

$$(a^{2} + ab)(b^{2} + ab) = (c^{2} + ab)(d^{2} + ab).$$

We condider the case $a, b, c, d \neq 0$

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 00000000 000000000	0000000	00

Х	Y	Ζ			
0	0	0	0	0	С

Supersymmetry 000000000 The eight-vertex model

Result and proof

Open case

Conclusion 00

Outline

- 1 The XYZ spin-chain
- 2 Supersymmetry
- 3 The eight-vertex model
- 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue

5 Open case

6 Conclusion

upersymmetry

he eight-vertex model

Result and proof

pen case

Conclusion 00

Special eigenvalue of the transfer matrix

Theorem [C.Hagendorf, J.L.]

For L = 2n + 1, $n \ge 1$, the transfer matrix of the supersymmetric eight-vertex model possesses the doubly degenerate eigenvalue

 $\Theta_n=(a+b)^{2n+1}.$

Its eigenspace is spanned by the ground states of H_{XYZ} with anisotropy parameters

$$J_x = 1 + \zeta, \quad J_y = 1 - \zeta, \quad J_z = \frac{1}{2}(\zeta^2 - 1), \quad \zeta = \frac{cd}{ab} \neq 0$$

and the ground state eigenvalue $E_0 = -\frac{1}{4}(2n+1)(3+\zeta^2)$. Moreover, if a, b, c, d > 0, then Θ_n is the largest eigenvalue.

Supersymmetry

The eight-vertex model

Result and proof

Den case

Conclusion 00

The strategy of the proof

Supersymmetry

The eight-vertex model

Result and proof

Open case

Conclusion 00

The strategy of the proof

About the proof:

- Elementary !
- Based on Susy.
- No need of the explicit g.s.
- $d = 0 \rightarrow XXZ$

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 0000000 000000000	000000	00

How can supersymmetry characterise XYZ ground states?

	Supersymmet
00	00000000

Result and proof

Dpen case

Conclusion

(Co)homology

Solutions to $\mathfrak{Q}|\psi\rangle = 0, \mathfrak{Q}^{\dagger}|\psi\rangle = 0 \leftrightarrow$ equivalence classes of \mathcal{H}

$$W^1 \xrightarrow{\underline{\mathfrak{Q}}} W^2 \xrightarrow{\underline{\mathfrak{Q}}} \cdots \xrightarrow{\underline{\mathfrak{Q}}} W^L \xrightarrow{\underline{\mathfrak{Q}}} W^{L+1} \xrightarrow{\underline{\mathfrak{Q}}} \cdots$$

Cohomology sequence :

$$\mathcal{H}^{L}(\zeta) = \frac{\ker\{\mathfrak{Q}: W^{L} \to W^{L+1}\}}{\operatorname{im}\{\mathfrak{Q}: W^{L-1} \to W^{L}\}}, \quad L \geqslant 1$$

Homology sequence :

$$\mathcal{H}_{L}(\zeta) = \frac{\ker\{\mathfrak{Q}^{\dagger}: W^{L} \to W^{L-1}\}}{\operatorname{im}\{\mathfrak{Q}^{\dagger}: W^{L+1} \to W^{L}\}}, \quad L \geqslant 1$$

Z	Supersymmetry
0000	00000000

Result and proof

)pen case

Conclusion 00

Proposition

For each $n \ge 1$ and $\zeta \ne 0$, we have

$$\begin{aligned} \mathcal{H}^{2n}(\zeta) &= 0, \quad \mathcal{H}^{2n+1}(\zeta) = \mathbb{C}[|\phi_n(\zeta)\rangle] \oplus \mathbb{C}[|\bar{\phi}_n(\zeta)\rangle], \\ \mathcal{H}_{2n}(\zeta) &= 0, \quad \mathcal{H}_{2n+1}(\zeta) = \mathbb{C}[|\phi_n(\zeta^{-1})\rangle] \oplus \mathbb{C}[|\bar{\phi}_n(\zeta^{-1})\rangle], \end{aligned}$$

with

XY

$$|\phi_n(\zeta)\rangle = \sum_{m=0}^n \zeta^{n-m} \sum_{1 \leq x_1 < \dots < x_{2m} \leq 2n+1} \sigma_{x_1}^+ \cdots \sigma_{x_{2m}}^+ |\downarrow\downarrow \cdots \downarrow\rangle$$

and the spin-reversal image

$$|\bar{\phi}_n(\zeta)\rangle = \zeta^n \mathcal{R} |\phi_n(\zeta^{-1})\rangle, \quad \mathcal{R} = \sigma_1^{\mathsf{x}} \cdots \sigma_{2n+1}^{\mathsf{x}}.$$

idea: compute $\mathcal{H}^{L}(1)$ and use a conjugaison argument.

oupersymmetry

The eight-vertex model

Result and proof

Open case

Conclusion 00

Supersymmetry singlets

Non-trivial representatives ightarrow supersymmetry singlets in W^L

Theorem

Let $\zeta \neq 0$ and $n \ge 1$. If L = 2n, then $H_{XYZ}|_{W^{2n}} > E_0$. If L = 2n + 1, then the space of the ground states of $H_{XYZ}|_{W^{2n+1}}$ is spanned by the supersymmetry singlets

$$\begin{split} |\Psi_n\rangle &= |\phi_n(\zeta)\rangle + \mathfrak{Q}|\alpha_n\rangle = \mu_n |\phi_n(\zeta^{-1})\rangle + \mathfrak{Q}^{\dagger}|\beta_n\rangle \\ |\bar{\Psi}_n\rangle &= |\bar{\phi}_n(\zeta)\rangle + \mathfrak{Q}|\bar{\alpha}_n\rangle = \bar{\mu}_n |\bar{\phi}_n(\zeta^{-1})\rangle + \mathfrak{Q}^{\dagger}|\bar{\beta}_n\rangle, \end{split}$$

with $|\alpha_n\rangle, |\bar{\alpha}_n\rangle \in W^{2n}$, $|\beta_n\rangle, |\bar{\beta}_n\rangle \in W^{2n+2}$ and $\mu_n \neq 0, \bar{\mu}_n \neq 0$.

Result and proof

pen case

Conclusion 00

Example for L = 3

We have

$$\begin{split} |\phi_{1}(\zeta)\rangle &= \zeta |\downarrow\downarrow\downarrow\rangle + |\downarrow\uparrow\uparrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle \\ |\bar{\phi}_{1}(\zeta)\rangle &= |\uparrow\uparrow\uparrow\rangle + \zeta (|\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\rangle). \end{split}$$

The following alternate-cyclic states

$$\begin{split} |\Psi_{1}\rangle &= |\phi_{1}(\zeta)\rangle = \zeta |\downarrow\downarrow\downarrow\rangle + |\downarrow\uparrow\uparrow\rangle + |\uparrow\downarrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle \\ |\bar{\Psi}_{1}\rangle &= |\bar{\phi}_{1}(\zeta)\rangle + \sqrt{\frac{3}{2}} \left(\frac{\zeta^{2}-1}{\zeta^{2}+3}\right) \mathfrak{Q}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \\ &= \frac{4\zeta}{\zeta^{2}+3} \left(\zeta|\uparrow\uparrow\uparrow\rangle + |\uparrow\downarrow\downarrow\rangle + |\downarrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\rangle\right) \end{split}$$

are eigenstates of H_{XYZ} with eigenvalue $E_0 = -\frac{3}{4}(3 + \zeta^2)$.

Supersymmetry 00 00000000 The eight-vertex model

Result and proof

Open case

Conclusion 00

Properties of $|\Psi_n\rangle$ and $|\bar{\Psi}_n\rangle$

• The representatives are not uniques !

$$egin{aligned} &|ar{\Psi}_1
angle = 4\zeta|\uparrow\uparrow\uparrow
angle - \sqrt{rac{3}{2}}rac{4\zeta}{3+\zeta^2}\mathfrak{Q}(|\uparrow\downarrow
angle - |\downarrow\uparrow
angle) \ &= rac{4\zeta}{3+\zeta^2}\left(\zeta|\uparrow\uparrow\uparrow
angle + |\uparrow\downarrow\downarrow
angle + |\downarrow\uparrow\downarrow
angle + |\downarrow\downarrow\uparrow
angle
ight) \end{aligned}$$

• spin parity: $\mathcal{P}=(-1)\sigma_1^z\sigma_2^z\cdots\sigma_L^z$ measures the parity of the number of spins up

$$\mathcal{P}|\Psi_n\rangle = |\Psi_n\rangle, \quad \mathcal{P}|\bar{\Psi}_n\rangle = -|\bar{\Psi}_n\rangle$$

• spin reversal operator: $\mathcal{R} = \sigma_1^x \sigma_2^x \cdots \sigma_L^x$

 $\mathcal{R}|\Psi_n
angle\propto|\bar{\Psi}_n
angle$

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 00000000 000000000	000000	00

So far, we focused on W^{2n+1} ... But what can we say about the ground state of H_{XYZ} on V^{2n+1} ?

Х	Y	Ζ			
0	0	0	0	0	0

Supersymmetry 000000000 The eight-vertex model

Result and proof

Open case

Conclusion 00

XYZ ground state

Theorem

For each $n \ge 1$ and $\zeta \ne 0$, the states $|\Psi_n\rangle$ and $|\bar{\Psi}_n\rangle$ span the space of the ground states of H_{XYZ} on V^{2n+1}

Strategy: we prove that the XYZ ground states are in W^{2n+1} Sketch of the proof:

- **1** It is sufficient to prove the statement for $\zeta > 0$.
- ② There exists a constant µ s.t. µ − H_{XYZ} |_{P≡±1} is non negative and irreducible. We apply the Perron-Frobenius theorem. The Perron states |ψ_±⟩ are the unique ground states of H_{XYZ} |_{P≡±1} with real components.
- **③** By unicity, $S|\psi_{\pm}\rangle = t_{\pm}|\psi_{\pm}\rangle$, $t_{\pm}^{2n+1} = 1$. Hence $t_{\pm} = 1$.

[Yang & Yang '66]

XYZ 000000	Supersymmetry 000000000	The eight-vertex model	Result and proof ○○○ ●○○○○○○○ ●○○○○○○○○	Open case 0000000	Conclusion 00

How can supersymmetry help to compute the action of the transfer matrix on the XYZ ground states?

upersymmetry

he eight-vertex model

Result and proof

Open case

Conclusion

Commutation relation between R and q

We introduce a length-increasing operator A:

$$|A|\uparrow
angle=d\left(-rac{c}{a}|\uparrow\downarrow
angle+|\downarrow\uparrow
angle
ight), \quad A|\downarrow
angle=c\left(|\uparrow\uparrow
angle-rac{d}{b}|\downarrow\downarrow
angle
ight).$$

We define $A_0^j: V_0 \otimes V^L o V_0 \otimes V^{L+1}$ by

$$A_0^1 = A \otimes 1 \otimes \cdots \otimes 1, \quad A_0^j = S^{j-1} A_0^1 S^{1-j}, \quad j = 1, \dots, L.$$

Local commutation relation between R and q

$$R_{0i+1}R_{0i}(1\otimes \mathfrak{q}_i) + (a+b)(1\otimes \mathfrak{q}_i)R_{0i} = A_0^{i+1}R_{0i} + R_{0i+1}A_0^i$$

if $(a^2 + ab)(b^2 + ab) = (c^2 + ab)(d^2 + ab)$.

The RHS is a local boundary term !

he eight-vertex model

Result and proof

pen case 000000 Conclusion 00

The transfer matrix preserves the supersymmetry

The local commutation relation leads to the

commutation relation between ${\mathcal T}$ and ${\mathfrak Q}$ on V^L

 $\mathcal{T}\mathfrak{Q} = -(a+b)\mathfrak{Q}\mathcal{T}$

if
$$(a^2 + ab)(b^2 + ab) = (c^2 + ab)(d^2 + ab)$$
.

proof:

- trivial on $V^L \setminus W^L$,
- on W^L , the alternate sum $\mathfrak{Q} = \sum_j (-1)^j \mathfrak{q}_j$ cancels the local boundary terms.

Matrix elements w.r.t susy singlets Matrix elements w.r.t representatives

Let $|\Psi\rangle$ be a supersymmetry singlet with decompositions

$$|\Psi\rangle = |\phi\rangle + \mathfrak{Q}|\alpha\rangle, \quad |\Psi\rangle = |\phi'\rangle + \mathfrak{Q}^{\dagger}|\beta\rangle$$

then we have the expectation value

$$\langle \Psi | \mathcal{T} | \Psi
angle = \langle \phi' | \mathcal{T} | \phi
angle$$

The proof is simple:

$$\begin{split} \langle \Psi | \mathcal{T} | \Psi \rangle &= \langle \phi' | \mathcal{T} | \Psi \rangle + \underline{\langle \beta | \mathcal{QF} | \Psi \rangle} \\ &= \langle \phi' | \mathcal{T} | \phi \rangle + \underline{\langle \phi' | \mathcal{FP} | \alpha \rangle} \end{split}$$

YZ	Supersymmet
00000	000000000

Result and proof

pen case

Conclusion 00

Eigenvectors of T - I.

For
$$L = 2n + 1$$
, $\Theta_n = (a + b)^{2n+1}$

 Θ_n -eigenstates \Rightarrow XYZ ground states !

Indeed, if $|\Psi\rangle$ satisfies $\mathcal{T}|\Psi\rangle=\Theta_n|\Psi\rangle$ then

$$|S|\Psi
angle = |\Psi
angle, \quad H_{XYZ}|\Psi
angle = -rac{1}{4}(2n+1)(\zeta^2+3)|\Psi
angle, \quad \zeta = rac{cd}{ab}$$

if $(a^2 + ab)(b^2 + ab) = (c^2 + ab)(d^2 + ab)$.

XYZ ground states $\Rightarrow \Theta_n$ -eigenstates ?

Z	Supersymmetr
0000	000000000

XY

The eight-vertex model

Result and proof

pen case

Conclusion 00

Eigenvectors of T – II.

XYZ ground states $\Rightarrow \Theta_n$ -eigenstates ?

Yes ! As $[\mathcal{T}, \mathcal{H}_{XYZ}] = 0$ and $[\mathcal{T}, \mathcal{P}] = 0$, one has

$$\langle \bar{\Psi}_n | \mathcal{T} | \Psi_n \rangle = \langle \Psi_n | \mathcal{T} | \bar{\Psi}_n \rangle = 0$$

Hence $|\bar{\Psi}_n\rangle$ and $|\Psi_n\rangle$ are eigenstates of \mathcal{T} .

 $\rightarrow\,$ Last step: compute the eigenvalue

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Cond
000000	00000000	00000	000	0000000	00

Eigenvalue of T - I.

The eigenvalue of \mathcal{T} w.r.t. $|\Psi_n\rangle$, $|\bar{\Psi}_n\rangle$ are the diagonal elements

$$\Theta_n = \frac{\langle \Psi_n | \mathcal{T} | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle} = \frac{\langle \bar{\Psi}_n | \mathcal{T} | \bar{\Psi}_n \rangle}{\langle \bar{\Psi}_n | \bar{\Psi}_n \rangle}$$

...that we express in terms of matrix elements w.r.t. representatives

$$\Theta_n = \langle \bar{\phi}_n(\zeta^{-1}) | \mathcal{T} | \uparrow \uparrow \cdots \uparrow \rangle, \quad \zeta = cd/ab.$$

Example: L=3

Matrix element for n = 1, $\zeta = cd/ab$

$$\begin{split} \Theta_1 &= \langle \uparrow \uparrow \uparrow |\mathcal{T}| \uparrow \uparrow \uparrow \rangle + \frac{1}{\zeta} (\langle \uparrow \downarrow \downarrow |\mathcal{T}| \uparrow \uparrow \uparrow \rangle + \langle \downarrow \uparrow \downarrow |\mathcal{T}| \uparrow \uparrow \uparrow \rangle + \langle \downarrow \downarrow \uparrow |\mathcal{T}| \uparrow \uparrow \uparrow \rangle) \\ &= (a^3 + b^3) + 3\zeta^{-1} cd(a+b) = (a+b)^3 \end{split}$$

Z Super 0000 0000

rsymmetry 000000 The eight-vertex model

Result and proof

pen case

Conclusion

Eigenvalue of T - II.

Proposition

For each $n \ge 1$,

$$\Theta_n = \langle ar{\phi}_n(\zeta^{-1}) | \mathcal{T} | \uparrow \uparrow \cdots \uparrow
angle = (a+b)^{2n+1}$$

The proof is elementary combinatorics. It relies on a mapping from the terms in the sum

$$\sum_{m=0}^{n} \sum_{1 \leq x_1 < \dots < x_{2m} \leq 2n+1} \zeta^{-m} \langle \uparrow \uparrow \dots \uparrow | \sigma_{x_1}^+ \cdots \sigma_{x_{2m}}^+ \mathcal{T} | \uparrow \uparrow \dots \uparrow \rangle$$

and the set Γ of words $\gamma = (\gamma_1, \ldots, \gamma_{2n+1})$ with letters $\gamma_j \in \{a, b\}$. Proviging to each word the weight $\omega(\gamma) = \gamma_1 \gamma_2 \cdots \gamma_{2n=1}$, the sum reduces to

$$\Theta_n = \sum_{\mathsf{\Gamma}} \omega(\gamma) = (\mathsf{a} + \mathsf{b})^{2n+1}$$

oupersymmetry

he eight-vertex model

Result and proof

)pen case

Conclusion 00

Special eigenvalue of the transfer matrix

Theorem [C.Hagendorf, J.L.]

For L = 2n + 1, $n \ge 1$, the transfer matrix of the supersymmetric eight-vertex model possesses the doubly degenerate eigenvalue

 $\Theta_n = (a+b)^{2n+1}$

Its eigenspace is spanned by the ground states of H_{XYZ} with anisotropy parameters

$$J_x = 1 + \zeta, \quad J_y = 1 - \zeta, \quad J_z = \frac{1}{2}(\zeta^2 - 1), \quad \zeta = \frac{cd}{ab} \neq 0$$

and the ground state eigenvalue $E_0 = -\frac{1}{4}(2n+1)(3+\zeta^2)$. Moreover, if a, b, c, d > 0, then Θ_n is the largest eigenvalue.

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 0000000 0000000	0000000	00

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	0
000000	00000000	00000	000 0000000 00000000	0000000	C

Outline

- The XYZ spin-chain
- 2 Supersymmetry
- 3 The eight-vertex model
- 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue

5 Open case

6 Conclusion

upersymmetry

he eight-vertex model

Result and proof 000 0000000 00000000 Open case •000000 Conclusion 00

Hamiltonian with open boundary conditions

Open chain with boundary magnetic fields

$$H_{XYZ} = -\frac{1}{2} \sum_{j=1}^{L-1} \left(J_x \sigma_j^x \sigma_{j+1}^x + J_y \sigma_j^y \sigma_{j+1}^y + J_z \sigma_j^z \sigma_{j+1}^z \right) + (h_B)_1 + (h_B)_L$$

with the boundary terms

$$h_B = \lambda_0 + \lambda_x \sigma^x + \lambda_y \sigma^y + \lambda_z \sigma^z$$

Can we choose the λ_x,λ_y and λ_z such that the Hamiltonian is supersymmetric with

$$J_x = 1 + \zeta, \quad J_y = 1 - \zeta, \quad J_z = rac{1}{2}(\zeta^2 - 1)$$
 ?

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	000000000	00000	000	000000	00
			0000000000		

Open chain and Susy

The XYZ local supercharge is not unique. One can consider its image under spin reversal

$$\begin{array}{l} \mathfrak{q}|\!\uparrow\rangle = 0, \quad \mathfrak{q}|\!\downarrow\rangle = |\!\uparrow\rangle \otimes |\!\uparrow\rangle - \zeta|\!\downarrow\rangle \otimes |\!\downarrow\rangle \\ \bar{\mathfrak{q}}|\!\downarrow\rangle = 0, \quad \bar{\mathfrak{q}}|\!\uparrow\rangle = |\!\downarrow\rangle \otimes |\!\downarrow\rangle - \zeta|\!\uparrow\rangle \otimes |\!\uparrow\rangle \end{array}$$

and the gauge supercharge

$$\mathfrak{q}_{\alpha}|\psi\rangle=|\psi\rangle\otimes|\alpha\rangle+|\alpha\rangle\otimes|\psi\rangle$$

with $|\alpha\rangle \in V$. We consider the linear combination

 $\mathfrak{q}(y)=(1-y^2\zeta)\mathfrak{q}+y(y^2-\zeta)ar{\mathfrak{q}}+\mathfrak{q}_\phi,\quad |\phi
angle=y(y^2\zeta-1)|\!\!\uparrow
angle\!\!+(\zeta\!-\!y^2)|\!\!\downarrow
angle.$

Supercharge for the open chain

$$\mathfrak{Q}(y) = \sum_{j=1}^{L} (-1)^j \mathfrak{q}_j, \quad \mathfrak{Q}(y)^2 = 0$$

Supersymmetry

The eight-vertex model

Result and proof 000 0000000 00000000 Open case

Conclusion

XYZ Hamiltonian with open b.c.

Supersymmetry of the open chain

The anticommutator of the supercharge and its adjoint is

$$\frac{1}{\mathcal{N}}\left(\mathfrak{Q}(y)\mathfrak{Q}(y)^{\dagger}+\mathfrak{Q}(y)^{\dagger}\mathfrak{Q}(y)\right)=H_{XYZ}-E_{0}$$

where $\ensuremath{\mathcal{N}}$ is a positive normalisation constant and

$$J_{x} = 1 + \zeta, \quad J_{y} = 1 - \zeta, \quad J_{z} = \frac{1}{2}(\zeta^{2} - 1),$$
$$\lambda_{x} = -\frac{J_{x}(y + y^{*})}{2(1 + |y|^{2})}, \quad \lambda_{y} = -\frac{J_{y}(y - y^{*})}{2i(1 + |y^{2}|)}, \quad \lambda_{z} = \frac{J_{z}}{2}\left(\frac{1 - |y|^{2}}{1 + |y|^{2}}\right).$$

The Susy is present on all the space V^L .

Z Supersymmetro

he eight-vertex model

Open case

Conclusion 00

We parametrise y by
$$t : y = \vartheta_1(t, p^2)/\vartheta_4(t, p^2)$$
.

For each $L \ge 1$, if $t \ne \pi/6$, then the (co)homology is trivial

$$\mathcal{H}^L = \mathcal{H}_L = 0.$$

If $t = \pi/6$, then

$$\mathcal{H}^{L} = \mathbb{C}[|\mathbf{v}\cdots\mathbf{v}\rangle], \quad \mathcal{H}_{L} = \mathbb{C}[|\mathbf{w}\cdots\mathbf{w}\rangle]$$

where $|v
angle\in V^2$ and $|w
angle\in V^2$ are known.

We do not present the proof of this stament.

- ightarrow Jacobi artheta functions,
- $\rightarrow\,$ Ground states of the open XYZ spin chain

$$|\Psi_L\rangle = |\mathbf{v}\cdots\mathbf{v}\rangle + \mathfrak{Q}|\alpha\rangle = \mu|\mathbf{w}\cdots\mathbf{w}\rangle + \mathfrak{Q}^{\dagger}|\beta\rangle$$

	Supersymmetry	The e
000	00000000	0000

Result and proof 000 0000000 00000000 Open case

Conclusion 00

Transfer matrix

Double rows transfer matrix

$$\mathcal{T} = \operatorname{tr}_0\left(K_0^+ R_{0L} \cdots R_{01} K_0^- R_{01} \cdots R_{0L}\right)$$

The *R* and K^{\pm} matrix satisfies the Yang-Baxter equation and boundary YBE, respectively.

We take a specific (symmetric) solution for the K matrix

$$K = 1 + \frac{2y}{1+y^2} \frac{cd + ab}{ac + bd} \sigma^x + \frac{1-y^2}{1+y^2} \frac{b^2 - d^2}{2ab + b^2 + d^2} \sigma^z$$

that leads to the supersymmetric H_{XYZ} .

[Sklyanin '87, Inami & Konno '94]

Z Supersy 2000 00000

ersymmetry 000000 he eight-vertex model

Result and proof 000 0000000 00000000 Open case

Conclusion 00

Commutation relation between T and \mathfrak{Q} – I.

There is an explicit mapping $A: V \to V \otimes V$, such that, defining $A_0^j: V_0 \otimes V^L \to V_0 \otimes V^{L+1}$ by

$$A_0^1 = A \otimes 1 \otimes \cdots \otimes 1, \quad A_0^j = S^{j-1} A_0^1 S^{1-j}, \quad j = 1, \dots, L,$$

we have

Local commutation relation

$$R_{0i+1}R_{0i}(1\otimes \mathfrak{q}_i(y)) + (a+b)(1\otimes \mathfrak{q}_i(y))R_{0i} = A_0^{i+1}R_{0i} + R_{0i+1}A_0^i$$

and a local commutation relation at the boundary,

$$(a+b)A_0^1K_0 = R_{01}K_0A_0^1$$

if $(a^2 + ab)(b^2 + ab) = (c^2 + ab)(d^2 + ab)$.

upersymmetry

he eight-vertex model

Result and proof 000 00000000 000000000 Open case

Conclusion

Commutation relation between T and $\mathfrak{Q} - II$.

On V^L , $L \ge 1$

$$\mathcal{TQ}(y) = (a+b)^2 \mathfrak{Q}(y)\mathcal{T}.$$

Proof: direct application of local commutation relations.

For the XXZ case ($\zeta = y = 0$) : arXiv:1709.00442 [Weston & Yang, '17]

For $t = \pi/6$, on can compute the action of the transfer matrix on Susy singlets $|\Psi_L\rangle$. We find

$$\mathcal{T}|\Psi_L
angle=\Theta_L|\Psi_L
angle, \quad \Theta_L=(a+b)^{2L}\mathsf{tr}(\mathcal{K}^+\mathcal{K}^-)$$

Proof: based on the structure of the representative and a reccurence on L : $\Theta_L = (a + b)^4 \Theta_{L-2}$

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 00000000 000000000	000000	00

Outline

- The XYZ spin-chain
- 2 Supersymmetry
- 3 The eight-vertex model
- 4 Resut and sketch of the proof
 - Result
 - Susy singlets XYZ ground states
 - Susy and integrability TM eigenvalue
- 5 Open case

Supersymmetry

The eight-vertex model

Result and proof 000 00000000 000000000 pen case

Conclusion

Conclusions

Conclusions

- Periodic b.c.: $(a + b)^{2n+1}$.
- Commutation relation between R and q:

 $\mathsf{Integrability} \leftrightarrow \mathsf{supersymmetry}$

• Results for open b.c.

Generalisations:

- Inhomogeneous eigenvalue $\prod_{i=1}^{L} (a(u_i) + b(u_i))$?
- Explicit components of the eigenstates ?
- Computation of correlation functions ?

XYZ	Supersymmetry	The eight-vertex model	Result and proof	Open case	Conclusion
000000	00000000	00000	000 0000000 000000000	0000000	0●

Thanks for your attention – OBRIGADO

Periodic b.c.: arXiv:1711.04397

Open b.c.: to be published (2017 + ϵ , ϵ > 0)