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Introduction - Notation

M = 4, N = 3 a1 a2 b1 b2 c1 c2

Antiferromagnetic phase

I Six Boltzmann weights w(a1), etc.
I The restriction w(a1) = w(a2) = a, w(b1) = w(b2) = b,

w(c1) = w(c2) = c is used. There are thus two independent
parameters; a/c and b/c .



Introduction - Periodic and Free Boundary Conditions

I The free energy has been exactly calculated for periodic
boundary conditions [Lieb (1967)] and for free boundary conditions
[Brascamp, Kunz and Wu (1973)].

I The free energy is the same for periodic and free boundary
conditions.

I The phase diagram is determined by the parameter
∆ := (a2 + b2 − c2)/2ab.

a/c

b/c

1

1

∆ < −1

|∆| < 1

∆ > 1
∆ = 0



Introduction - Fixed Boundary Conditions

I The free energy depends on the boundary conditions, even in
the thermodynamic limit.

=

I There may be separation of phases; several phases may
coexist.

I There are exact solutions for three nontrivial cases: Domain
Wall Boundary Conditions, Reflective End Boundary
Conditions and Half Turn Boundary Conditions.



Domain Wall Boundary Conditions - Definition
I DWBC are defined on a square lattice of size N × N
I Each state is a set of N curves which flow from the upper

boundary to the left boundary
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DWBC - Arctic Circle
I The six vertex model with DWBC, ∆ = 0 and a = b is

equivalent to the domino tilings on the Aztec diamond. P. Ferrari

and H. Spohn, J. Phys. A 39 10297 (2006).

I Arctic Circle Theorem: The curve approaches a circle.
I Shape fluctuations of the arctic curve are of order N1/3. K.

Johansson, Commun. Math. Phys. 209 437 (2000).

I There are also exact results on the arctic curve for ∆ 6= 0. F.

Colomo and A. Pronko, J. Stat. Phys. 138 662 (2010) and F. Colomo, A. Pronko and P. Zinn-Justin, J.

Stat. Mech. L03002 (2010).



DWBC - Arctic Circle

I The Arctic Circle Theorem can be illustarated by Monte Carlo.

I As N increases, the thermalization time increases rapidly.
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DWBC - Monte Carlo
I We begin with any allowed state. As the program runs, it will

then create a new allowed state at every step.
I A reasonable size is N = 500.
I Thermalization is slow when ∆ << −1.
I We use an algorithm first introduced by Allison and

Reshetikhin. It uses perturbation of the curves. There are two
Monte Carlo moves; flip up and flip down.

I Not every vertex will be flippable.

• flip down • flip down

•

•

••

•Flippable down

•Flippable up

•Flippable up and down



DWBC - Monte Carlo

I We consider a Markov process where pab is the probability of
a transition from the state a to the state b. The matrix (pab)
must satify the total probability condition

∑
b pab = 1.

I If q is a probability measure on the set of states, and (pab)
satisfies the detailed balance condition qapab = qbpba, then
the Markov process will converge to q.

I We search randomly among all N2 vertices until we find a
vertex v = (x , y) which is flippable.

I If we find a vertex flippable up (only), then we flip up with
probability Pup flip. If the flip happens, the state S is replaced
by a new state S ′.

S =

(
a2 c2

b2 c1

)
=

•
flip up

=

(
c2 b2

c1 a2

)
= S ′

Pup flip = W (S ′)
R = w(a2)w(b2)w(c1)w(c2)

R .



DWBC - Monte Carlo

I If we find a vertex flippable both up and down, a flip will
happen with probability Pflip. The flip will then be up with
probabilty Pup flip | flip.

S

T
• Pflip = W (S ′)+W (T ′)

R

S =

(
a2 c2

b2 a1

)
=

•
flip up

=

(
c2 b2

c1 c2

)
= S ′

Pup flip | flip = W (S ′)
W (S ′)+W (T ′) = w(b2)w(c1)w(c2)2

W (S ′)+W (T ′) .

T =

(
a1 b2

b1 c2

)
=
• flip down

=

(
c1 c2

c2 a1

)
= T ′

Pdown flip | flip = W (S ′)
W (S ′)+W (T ′) = w(a1)w(c1)w(c2)2

W (S ′)+W (T ′) .



DWBC - Density profiles

I One possible measure of the model is the density on, for
example, vertical edges; ρv .

ρv = 1

ρv = 0

I When ∆ = 0, 〈ρv 〉 is exactly known. N. Allegra, J. Dubail, J.-M. Stéphan and

J. Viti, J. Stat. Mech. 053108 (2016). O. F. Syljůasen and M. B. Zvonarev (2004).

I The function 〈ρv (x , y)〉 has oscillations which disappear in the
limit N →∞. These oscillations become more pronounced as
∆ decreases.



DWBC - Density profiles. ∆ = 0.
N. Allegra, J. Dubail, J.-M. Stéphan and J. Viti, J. Stat. Mech. 053108 (2016).

〈ρv (x , y)〉 =

∫ π

−π

dk1

2π

∫ π

−π

dk2

2π
e i(k2−k1)x+y [ε(κ(k1))−ε(κ(k2))]

e iN[ε̃(κ(k2))−ε̃(κ(k1))]

√
1− i

b

a
sinκ(k1)

√
1− i

b

a
sinκ(k2)

√
κ′(k1)

√
κ′(k2)

1

2i sin κ(k1)−κ(k2)
2

where

tanκ(k) =
a

c
tan k , ε(κ) = −1

2
log

c + b cosκ

c − b cosκ
, ε̃(κ) =

i

2
log

a + ib sinκ

a− ib sinκ

I In the limit N →∞ (x/N, y/N constant) the double integral
becomes an elementary function.

I The integral is difficult to evaluate accurately for finite N.



DWBC - Density profiles. ∆ = 0, a = b.
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N = 63; y = 0, 8, 30. N = 500.
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DWBC - Density profiles. ∆ ≤ −1.
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DWBC - Arctic curves. |∆| < 1. F. Colomo and A. Pronko (2010)

x

y

1

1

ζ = 0

ζ = π − λ− η

a = sin (λ+ η), b = sin (λ− η)
c = sin 2η, ∆ = cos 2η
x = X (ζ), y = Y (ζ)
0 ≤ ζ ≤ π − λ− η
X (ζ) = Y (π − λ− η − ζ)

Y (ζ) =

sin2 ζ sin2 (ζ + 2η) sin (ζ + λ− η) sin (ζ + λ+ η)

sin 2η sin (λ− η)[sin (ζ + λ+ η) sin ζ + sin (ζ + λ− η) sin (ζ + 2η)]

×
[ sin (λ− η) sin (λ+ η)

sin2 ζ sin (ζ + λ− η) sin (ζ + λ+ η)

+
sin (2ζ + 2λ)

sin (ζ + λ− η) sin (ζ + λ+ η)

α sinα(λ− η)

sinαζ sinα(ζ + λ− η)

−α
2 sinα(2ζ + λ− η) sinα(λ− η)

sin2 αζ sin2 α(ζ + λ− η)

]
; α =

π

π − 2η



DWBC - Arctic curves. a = b.
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DWBC - Antiferromagnetic regime (∆ < −1)

x

y

∆ = −10

I Ferromagnetic, disordered and antiferromagnetic phases
coexist.

I The inner curve has no known equation.
I ”Saddle points” in the disordered region.



DWBC - Antiferromagnetic regime (∆ < −1)
I ∆ = −2, b = 2a.
I (a) The measured arctic curve agrees with the exact arctic

curve. Quantity measured is 〈δρc〉 := 〈ρc1〉 − 〈ρc2〉.
I (b) Map of the two opposite a.f.m. phases in a typical state.
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Partial Domain Wall Boundary Conditions

M = 6, N = 4 A state

I Free upper boundary, M ≥ N.
I A state consists of N curves beginning on the upper boundary

and ending on the left boundary.
I There are no exact results.
I There are five weights; w(a1), w(a2), w(b1), w(b2) and

w(c1) = w(c2) = c . There are three independent parameters;
we have the restriction c = 1 and
w(a1)/w(a2) = w(b1)/w(b2).



Partial DWBC - Examples (M/N = 2, M/N = 5/4)
I (a) ∆ = 0, a = b. Four frozen corners.
I (b) ∆ = 0, b = 2a.
I (c), (d) ∆ = −2, b = 2a. Two antiferromagnetic regions.
I (e) M/N = 5/4, ∆ = 0, b = 2a.
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Reflective End Boundary Conditions

µ

µ

µ

•U

λ −λ
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λ −λ

•U

λ −λ

I M = 2N

I Three spectral parameters γ, µ, λ. Here µ = 0.

I In the disordered regime (−1 < ∆ < 1) a(λ) = sin (γ − λ),
b(λ) = sin (γ + λ) and c(λ) = sin 2γ.

I On even columns, w(a1) = w(a2) = a(λ),
w(b1) = w(b2) = b(λ) and w(c1) = w(c2) = c(λ). On odd
columns w(a1) = w(a2) = b(λ), w(b1) = w(b2) = a(λ).



Reflective End BC. The case ∆ = 0, a = b.
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I (a) The density profile on vertical edges is the same as for
DWBC.

I (b) In particular, the arctic curve is a semicircle.
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Reflective End BC. The case ∆ = 0, b = 2a.

I When b > a, there are two new frozen corners at the upper
boundary. The arctic curve is not known

I Figure (a) shows the structure of the upper left corner.
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Reflective End BC. The cases ∆ = −2; b = a, b = 2a.
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Half Turn Boundary Conditions

I M = 2N.
I Numerical results indicate that the arctic curves are the same

as for DWBC.
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Half Turn Boundary Conditions
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I (a) For N = 500, ∆ = 0 and b = 2a the density profile on
vertical edges agrees with the asymptotic formula for DWBC
with ∆ = 0 and b = 2a.

I (b) For N = 500, ∆ = −2 and b = 2a the arctic curve agrees
with the arctic curve for DWBC with ∆ = −2 and b = 2a.



19 vertex model with DWBC - The 19 vertices

a1 a2 b1 b2 c1 c2

d1 d2 d3 d4 e1 e2 e3 e4

f1 f2 f3 f4 g



19 vertex model with DWBC - The 32 flips
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19 vertex model with DWBC - Previous work

I In the integrable case, the weights are parametrized by two
variables. A. Klümper, M. T. Batchelor and P. A. Pearce, J. Phys. A 24 3111 (1991).

wa = sinh (λ− u) sinh (2λ− u)

wb = sinh u sinh (λ+ u)

wc = sinhλ sinh 2λ

wd = sinh u sinh (λ− u)

we = sinh 2λ sinh (λ− u)

wf = sinh 2λ sinh u

wg = sinhλ sinh 2λ− sinh u sinh (λ− u)

I The model is critical when λ = −iγ, 0 ≤ γ < π.

I The model with these boundary conditions has recently been
studied by Monte Carlo K. Eloranta, arXiv: 1710.03609



19 vertex model with DWBC - Monte Carlo

I λ = −iπ/3, u = −iπ/6
I Frozen corners, disorder in center.
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19 vertex model with DWBC - Monte Carlo
I wa = wb = we = 1, wc = wg = 2.5, wd = wf = 2.
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Conclusion and prospects

I The six vertex model with Partial DWBC displays phase
separation and there are frozen corners as in the six vertex
model with DWBC.

I The arctic curves of the six vertex model with Partial DWBC
are unknown.

I The six vertex model with REBC displays phase separation
and there are frozen corners. When a = b the arctic curve is
the same as for DWBC. When a 6= b the arctic curve is
different from the arctic curve for DWBC, and there are two
additional frozen corners.

I The arctic curves of the six vertex model with REBC are
unknown.

I The six vertex model with HTBC is the same as the six vertex
model with DWBC in the thermodynamic limit.

I It should be possible to study the 19-vertex model with a
similar algorithm.
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