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Green-Schwarz o-model on AdSs x, S°

Consider the GS action on the worldsheet ¥ = S x R
S, =g [ o (L), 6= PO - (PO - pO)
3

where Jy = f~10.f € psu(2,2|4) and f € PSU(2,2|4).
The Euler-Lagrange EOM can be put in Lax form with Lax pair

Li(2) = SO 4+ 20D 242 1P,
A convenient form to start the Hamiltonian analysis is to write instead
S, = —4g /z d’0c (ALOA_ +vF, ),
where v is a Lagrange multiplier enforcing the condition F,_ = 0. This

last expression can be interpreted as well as a non-Abelian version of the
Buscher approach to T-duality.
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The A-model in AdSs x ) S°

A A-model is an integrable deformation of a o-model: arXiv:1409.1538
k
Sy = SWAW(F, As) - / Po (A (Q-DA), keZ
T™Jx
where F € PSU(2,2|4), A+ € psu(2,2|4) and

Q(\) = PO AP L A2p@) L A\=1p) - N2 -1 4 4”75

For A — 1 with k — oo, g = fixed and F =1+ 4Trng/, the action reduces

to the “Non-Abelian Buscher's” form
S, = —4g / d’o (ALOA_ +uF, ).

For A — 0 with g — oo, k =fixed, we get a current-current perturbation
of a gauged WZW model, intimately related to the Pohlmeyer reduction.
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Lax pair and key relations

Euler-Lagrange EOM can be put in Lax form
Zi(z) = j(:o) + zlj(El) + zi2/j(t2) + 2_1/(3),
in terms of the psu(2,2(4) "dual” currents

L = QTOYA)QT(\) — Adr] LF 10, F,

I = —Q 'OV - Ade]ro_ FFL

The A1+ EOM are equivalent to

k k

S+ =5 (NAL - A-), I =~ (A = QNA-),
where
k
I = 5 (FrlopF+F 1AL F—A)),
k
g = —g(a_ff—l—fA_f—l +AL),

are two mutually commuting Kac-Moody currents
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As a consequence of this we have that (z+ = A*1/2)

27 27
Ly(zg) = iTji = m(zg) = Pexp[$7 /51 do _74].
Now, on-shell, and in terms of the wave function
(O + Zu(2)¥(z) =0,
we can expresse the Lagrangian fields in the form

F=V(z)V(z_) L, Ap = =01V (ze)W(ze) 7Y,
QTNAL = -0, V(2 )W (z.)™ Y, QWAL = —0_W(z)W(z,) L.

From this follows that
Son-shell = Swzw (V(z1)) — Swzw (V(z-))

signaling a phase space decomposition at the points z. The key relations
for m(zy) and F suggest a connection with a Chern-Simons theory.
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General properties of A-models...

@ Introduced by Sfetsos in arXiv:1312.4560 for the PCM.

o Preserves integrability but breaks the global F left action Noether
symmetry of the o-model that reemerges as a Poisson-Lie group
signaling a quantum group Uq(f) symmetry. arXiv:1506.06601

@ Works as a regularization of the o-model spectrum which is truncated
by the WZW level k. arXiv:1704.05437

@ Implement the Faddeev-Reshetikhin ultra-localization mechanism
directly in the action functional. arXiv:1506.06601

@ The theory when A — 0 in the Green-Schwarz case is naturally
connected with the Pohlmeyer reduction. arXiv:1407.2840

@ In the Green-Schwarz case the action possesses a deformed version of
kappa symmetry. arXiv:1409.1538
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@ The gauge fixed theory is a symplectic deformation of the o-model
with a dispersion relation that breaks 2D Lorentz symmetry in a
controlled way. arXiv:1704.05437

@ The beta function exact in A but to one-loop in 1/k for the
Green-Schwarz AdSs x, S° vanishes. arXiv:1507.05420

@ The beta function exact in \ but to one-loop in 1/k for the
AdS, x\ §? Hybrid formalism vanishes. arXiv:1609.05330

@ For A — 0 in the Hybrid case above, the light-cone current
components along coset directions does not mix. arXiv:1609.05330

@ In the A-model for the Green-Schwarz AdS, x S2 x T, the
background fields solve 10D SUGRA eom. (Weyl invariant at

quantum level hence a string background). arXiv:1601.08192.
arXiv: 1606.00394 for n=3 and arXiv: 1608.03570 for n=>5.
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Integrability and Hamiltonian analysis

Main goal

To exploit the A\-model/Chern-Simons theory link in order to bypass the
problem of the non-ultralocality of the deformed superstring.

The Z,(z) does not obey the Maillet algebra. Reason: We are dealing
with a constrained integrable field theory.
This is fixed by constructing a Lax pair extension .Z,,(z) outside the
constrained surface such that:
o The extended connection .Z,,(z) is strongly flat, i.e. it is flat on the
whole phase space.
@ The extended monodromy matrix m(z) is first class, i.e. it preserves
the constrained surface where the lambda model motion takes place.
This allows to identify sistematically the CS theory and find an ultralocal
Poisson bracket for Wilson loops at the boundary of the disc at the
expense of introducing two new first class constraints.
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Dirac procedure

Poisson brackets on lambda model phase space:

(Fa1(0), Fua(@)} = ~[Cor Fa2(0 oo F il

1
{P:tl(O'), A:F2(0—/)} = 5 C1250'o" .

Canonical Hamiltonian:
k

T 2 5 5 2m
He = ——( (;) (JE+ 72) + - (A g+ A7)
1

+5 (AL +AL) —ALQA)

Primary constraints:
P:t =~ 0.

Secondary constraints:

k .t k
=7 —g(ﬂ AL —A ) =0, C,—/,+§(A+—QA,)NO.
Equivalent to the AL EOM.
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Extended Hamiltonian:
HE = HT -2 <U+P_ + U_P+ +H+C_ +H_C_|_> .

Running again, stability of the constraints under the flow of Hg fixes
several Lagrange multipliers and produce no tertiary constraints.
In particular (kappa symmetry)

u® = — AW L [A® 1 ) = A 4 (AR ),
First class primary constraints
PO+ PO 0, 2, PM 12 PM o0, 2 PP 42, PP x0
are gauge fixed by
A9 ~0, A ~o0, A ~o0.

Second class pairs:

Q

~
~

Q

0
2P —zPY ~ 0 c®xo,
2 PP —2P% ~ 0 cWxo
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At the end of the day: The Kac- Moody algebra is protected, the fields P
are eliminated, the constrains can be imposed strongly and we have that

O e P e P e
2 2 2 2 2 2
1D = a2 P2 g0, D=2 P12 ),
where o = —(2r/k)(z} — z*)™1. The only remaining constraints are

0 0
o0 = D= O SO,
90(1) _ C(l)—/ + 22 /(1)
90(3) — C(3) j—i— /£3)

and the phase space is entirely parameterized by the Kac-Moody currents.
In this partial gauge, the Lax pair takes the form

L) =101 20 4+ 2/ 2 (z)= -1 4 2@

as expansions around z = 0 and z = oco.
David M. Schmidtt (UFSCar) A-models as CS theories June 28 2018 12 / 30



In this conformal gauge approach the Virasoro constraints are imposed by
hand. The first class (shifted) Virasoro constraints are

T',i"‘r = T++ - Z+<I]Fl)g0(3)>, T/__ =T__+ Z+<I]F3)SD(1)>3
where
1 T
Tip = =5 (IP1P) = (2606 126060 = (2, — 2 )V,

~ L@,y

T _ =
2o

comes from the variation with respect to the 2D metric.
The momentum generator (requires a further shifting)

P=T,, — T _ (19,0

satisfy

{S+(0). P(0')} = J=(0') 00
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In order not to spoil the first class nature of T/, and the time flow
generated by the Hamiltonian we add a term F that is at most quadratic
in the constraints. Define the extended stress tensor

_ 0 1 — 1
Tt = Ty — (7) + 5F T—= o+ 5F
Then,
ﬁ:T++— ?,7, P:?+++ 777.

If we choose
F= 72azi<g0(1)g0(3)>

something remarkable happens: H becomes the boundary contribution to
the canonical Hamiltonian of a Chern-Simons Theory on the disc!.

Once we have explicit expressions for T we can construct our strongly
flat extended Lax connection.
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The extended Lax pair

To find .Z+(z), we need to compute the action of P+ = T on the
Kac-Moody currents. We find that

(o [ 0PN} = 550, Zs() + [ S0 Zs(2 )],
{/—7/51 do’'P1(0")} = _%&yi(zﬁ + [, Z(24)],

where

2r/k)p® + az* (% M) 4 06 ))
azt(y M 4 6 ))’

a(2? oM +Z—2HO(3))7

a(22eM 4 22,00,

are extensions of % (z) but evaluated at the points z = zy..
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As P generate translations, the first conclusion is that we must still have
Zoley) =+ f.
A Z,(z) satisfying this condition is (comes from hybrid superstring)
Zo(2) = £ ()02 /2-) Fs + £ (2)Uz/22) 7,
where fi.(z) = o (z* — z%) and
Q(z) = PO 4 z73p() 4 z72p(2) 4 ,=1p(3),
It obeys the Maillet bracket

{ZLs1(0; Z),?ag(al; w)} =[r12(z, w)
+[512(Z, W)
—2512(z, w)d. 1,

ZLoi(o;z
7§01(0—; Z) - 302(0'/; W)](Sga./
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The v and s are the anti-symmetric parts of

2

g A—j C(j’4_j) -1
w w
[ —— =0 12 P ( )7

R12(Z7 W) = —

where ¢y (z) is the deformed twisted function

’ 1
@)= o (2 2

Expanding around z = 0 and z = oo, we get
Zo(2) = Zi(z) - Z(2)
where
Z(2) = L)+ F(2)90 +azz2 oW 4 az®z o),
Z (2) = L(2)+az12p® 4 az3z,00).

These satisfy all the conditions found for £ (z1), Z_(z+). From this we
easiliy find the time component as well

Z(2)=ZL(2) + Z_(2).
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This extended Lax pair is strongly flat because

(Z_(2).5.} — {Z+(2)P_} = ~[Z+(2). Z ()],
where

pi:/ doTix(0).
51

We can show that

{ZLs(0:2), Tax(0')} = L1(0";2)0, 0 — [L+(0: 2) (0';2)] boor-

From this follows that the trace of the monodromy matrix is conserved.

The extended Hamiltonian and momentum take the quadratic form

A = i@ (2%, (Z+)—§T(z-)?a(z—)>,

o]
I
\
/\
L“
_|_
&@
|
R

z)+ Zo(z)))

precisely for the F as chosen above. The connection with CS is now more

evident.
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Consider the Monodromy matrix and the constraints

m(z) = Pexp[/

doZy(0;2)], &= (W, Tis),
S1

for i = 1,2,3. The relevant Poisson brackets are (take o € [0, 27])

{m(2), 90} = [€9(0), m(2)],
{m(2), 6.0} = (2-/2)[®(0), m(2)] - 203 (2)f (1), o),
{m(2), 60} = z:2[c(0), m(2)] + 2z, 203 (2)g (M), o),

where
o= [ do tela)o(o).

Two-fold interpretation:

I) On the constraint surface and for generic values of z, (m(z)) is first
class, i.e. preserve the surface p(7) ~ 0.

II) At the poles z = zy of the twisting function, the constraints o
generate gauge transformations strongly on m(zy).
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There is an enhancement of gauge symmetry with generator

A = 5= [ do (0 Zo(ze) = 0-Z,(2)).

It induces the full action of PSU(2,2|4)

{m(zx), H(n)} = [n+(0), m(z+)].

For ny = Qe, _ =€ and e = €(® 4 (1) 4 ¢(3) we recover the former
result. The dressing gauge fixes just the right conjugacy classes and
selects the true lambda model physical dof.

Summary

Hamiltonian:

b=k (o do(ZH(20)Lo(2)) — Zr(2-)Zo(2-)).
Gauge generator:

ﬁ(77) = _ﬁ fsl do <77+§U(Z+) - n—ya(z—» .
Kac-Moody algebra :

{Zo1(0;2), Loo(0'; 21)} = £Z([Cra, Lo2(07; 22|05 + C126, ).
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Chern-Simons theory

Conside the following CS action on the solid cylinder
Scs = 5(+) + 5y,

where (k = +k, opposite levels)

k k
= d7 (—AD, A+ 2A,F) — — / (A, A).
A Jpxr AT Japxr

Above, A= A;dx', i = 1,2 is a gauge field on the dics and A, is a
Lagrange multiplier. Then, we have two sets A(y);, A(y)r and Ayi, Ay,
of fields valued on psu(2,24).

The equations of motion are:

On the bulk: F; =0, 0:A; = DiA.

On the boundary: (JA;A; — 0A;A,) = 0.

We must choose A; = A;(A,) such that the bry eom are satisfied.
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The canonical Hamiltonian is
k k
hc = A-F — do (A A;) .
=3[R+ o= [ doiaag)

Recall h in lambda model

The Poisson bracket is

2
{Ain(x), Ap(y)} = 76UC125£y)

The symplectic form (Atiyah-Bott) is

k

Using the gauge vector fields induced by gauge transformations, we find
the gauge moment

X, = (Din)" — —ix,wcs = 0H(n),

LN
5 AA
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where

Ho = 5= [ 0F) —5= | doaan

Recall H(n) in lambda model

We now perform a symplectic reduction to the reduced space of flat
connections F = 0. The reduced symplectic form is the pull-back

wr = wcs|a=—guw-1
k
= —— [ do(6A; AD;6A,).
47 oD

Using the gauge vector fields induced by gauge transformations, we find

the boundary gauge moment

) ) —
X, = (Dm)AW — —ix, Wy = dH(n),

where B
— k
() = —5- | do(nAs).
T JoD
June 28 2018 23 /30
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The moment algebra is
k

— o | dode’ (G + [Cizs At Norar ) 2 1))
T JoD

Equivalently, the Poisson algebra at 9D is the KM algebra (see w,)

{Hn). H(1')}

27
{As1(0), Aca(0)} = = ([Cr2, Ar2 (0000 + Cr250).
The equivalence between lambda model and Chern-simons fields at 9D is

Lo(ze) = Aye, Lrl(ze) = Ay

This choice solves the boundary CS eom as well.
In terms of the z-dependent field

A2) = — o F (D)2 20) Ay + o2z /2 VA

The CS Poisson bracket extends to
{An(xi 2), Aoy w)} = ~2s12(2, w)e;0%y),

where s15 is the source of the non ultralocality of the lambda model.
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z-dependent Wilson loop algebra

We now compute the precursor of the algebra of the monodromy matrix
prior to the symplectic reduction.

Consider the z-dependent transport matrix for a path x/(¢') C D, t’ € [t, t]

T(t,%2) = Pexp|— /t ot dxc;gl)A,-(x(t’); 2.

For two transport matrices associated to the paths x/(t') C D, t' € [t, t]

and y/(s') € D, s’ € [3, s] that intersect a a single point x'(3) = y'(3) we
get

{T(t,t;2)1, T(s,5;w)2} =

—2T(t,8,2)1T(s,5; w)2
x812(z,w)T(5,t,2)1T(5,5; w)o.

When they intersect at several point we sum over a discrete set of
contributions.

David M. Schmidtt (UFSCar) A-models as CS theories June 28 2018 25 / 30



However, if the two paths coincide we get, naively
{T(t,t;2)1, T(t,t; w)2} = -2 /t dsT(t,s;z)1T(t,s; w)2
X512EZ, w)T(s,t;2)1T(s,S; w)a.
We now close the path into a loop v and consider the Wilson loop
W(yi2) = Pespl f dx'A(xiz)].
¥

The Poisson algebra is

{W(v:2)1, W(yiw)2} = —Q/t dsT (x(t),x(s); z)1 T(x(t), x(s); w)2
x512(z, w) T(x(s), x(t); 2)1 T (x(s), x(t); w)2.
If we split
s12(z, w) = a(z, w) ® b(z, w)
and define the Wilson loop with an "impurity” inserted at the point x(s)
W(~:; z) = T(x(t), x(s); z) * T(x(s), x(t); z).
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Then, we have the quadratic algebra

(W 2)1, Wy w)) = —2 / dsW (5 2} W(rs wa.

An interesting particular case is found when we evaluate the single point
intersection bracket at the points z = z4

_ 2 R R
{T(t,t;z£)1, T(s,S;z+)2} = TT(t,s;zi)lT(s,s;zi)z

X Ci2(z,w)T(8,t,z£)1 T(8,5; z+)2.

This last expression is the core of the Goldman bracket, when punctures
and the tensor Casimir are considered in some particular representations.
An important comment is in order. W(+; z) above always depends on the
area enclosed by ~ even if we restrict to flat gauge fields. Indeed, if we use
the flatness conditions at z4

OiAjx) = OiAix) + [Ai), Aj)] = 0
simultaneously to calculate
Fij(z) = 0iAj(2) — 9jAi(z) + [Ai(2), Aj(2)]-
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We find that
Fij(2) = 3 (2)X;(2),
where Xj(z) denotes a combination of commutators of the components of

Aj(+) that never vanishes.
There are two ways to keep Wilson loops non-trivial on the disc:

@ By introducing punctures as is usual in CS theory.

@ By introducing an spectral parameter z dependence, where the
twisting function now plays the rdle of an obstruction.

The equivalence between lambda model and Chern-simons fields at 0D is
now

Zo(2) = As(2), ZL.(2) = A(2).
Denote W(z) = W(JS; z). After the symplectic reduction we have that
W(z) — m(z).

This is the monodromy matrix of the lambda model, which is conserved in
time because .Z1(z) is a strongly flat Lax connection.
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Final comments

The picture between Poisson brackets is the following:

{Ai(x; 2), Aj2(y; w) }cs {As1(0; 2), As2(0”; W) }Maillet
Pexp Pexp

{W(2)1, W(w)2}

Conclusions

i) The theory living on the boundary of the Chern-Simons theory is the
lambda model. Similar to the ordinary CS/WZW connection.

i) We can bypass the non-ultralocality of the lambda models at the cost
of introducing two extra first class constraints F4) ~ 0 in a higher
dimension theory.

i) Under an eventual quantization, a potential advantage is to consider
the quantum theory on a disc of finite size. i.e. a finite sized closed string.)

Sympl. Red.
EEE—

2l B, {m(2)1, m(w)2} = Unknown.

... To be continued...
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Thank you!

— O ———
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