

based on arXiv:1903.07638, S. Profumo, F. Queiroz, C. Siqueira and, in preparation with J. Silk, F. Queiroz, C. Siqueira

Clarissa Siqueira

DARK MATTER AND WEAK INTERACTIONS, September 03, 2019

Motivation - Results AMS-02

Several works trying to explain the data

- Pulsars: B1055-52 (Fang *et al.*, 2019), Milisecond (Bykov *et al.*, 2019)
- Annihilating or decaying DM (Geng et al., 2019)

DM Particle - Detection Methods

An evidence of dark matter decay at AMS-02?

DM Indirect Searches

Propagation trough the Galaxy

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

Two-component DM Interpretation

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

The positron flux

The total expected flux:

$$\Phi_{\text{pred}}(E) = \Phi_{\chi}^{e^+}(E) + \Phi_{back}^{e^+}(E)$$
(1)

with,

$$\Phi_{\chi}^{e^+}(E) = \Phi_{\chi_1}^{e^+}(E) + \Phi_{\chi_2}^{e^+}(E)$$
(2)

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

The positron flux

Background flux:

$$\Phi_{back}^{e^+}(E) = c_d \frac{E^2}{\hat{E}^2} \left(\frac{\hat{E}}{E_1}\right)^{\gamma_d}$$
(3)

We adopt $c_d = 6.9 \times 10^{-2} (\text{m}^2 \, \text{sr s GeV})^{-1}$, $\gamma_d = -3.98$, and $\hat{E}(E) = E + \varphi_{e^+}$ with $\varphi_{e^+} = 1.10$ GeV.

- Include interaction between cosmic rays and the gas in the intergalactic medium;
- takes into account effects of solar modulation.

The positron flux

DM flux:

$$\Phi_{\chi}^{e^{+}}(E) = \frac{1}{4\pi} \frac{\rho_{\odot}}{b(E)} \Gamma \times \int_{E}^{m_{\chi}/2} dE_{s} \sum_{f} BR_{f} \frac{dN_{f}^{e^{+}}}{dE}(E_{s}) \mathcal{I}(E, E_{s})(4)$$

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

Energy spectrum

Cirelli, 2010.

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

Compatibility with $\gamma-ray$ data

 Strong limits from γ-rays: Dwarf Spheroidal galaxies (Fermi-LAT) and the Galactic Center (H.E.S.S.).

Results

Results

Cheking other possibilities

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

Branching ratio

An evidence of dark matter decay at AMS-02?

MED propagation

MAX propagation

Gamma-ray data

Gamma-ray Flux

$$\frac{\Phi_{\gamma}}{d\Omega dE} = \frac{r_{\odot}}{4\pi} \frac{\rho_{\odot}}{M_{DM}} J \sum_{f} \frac{dN_{\gamma}^{f}}{dE}, \quad J = \int_{l.o.s.} \frac{ds}{r_{\odot}} \frac{\rho(r(s,\theta))}{\rho_{\odot}}$$

Cohen et al., 2016.

Clarissa Siqueira

Gamma-ray data - Fermi-LAT

Cohen et al., 2016.

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

Comparing the dN/dE

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?

Comparing the Limits

M_N (GeV)	M_{DM} (GeV)	Γ_{pred} (s)	Γ_{lim} (s) (rescaled)
10	300	5.0×10^{27}	1.2×10^{27}
10	2000	3.6×10^{26}	3.0×10^{27}
50	300	2.2×10^{27}	1.2×10^{27}
50	2000	4.1×10^{26}	6.0×10^{27}
80	300	3.0×10^{27}	4.8×10^{27}
80	2000	3.6×10^{26}	9.0×10^{27}

Table: Comparison between the stronger limits rescaled and our predictions.

Uncertainties in $\gamma-{\rm ray}$ Limits

An evidence of dark matter decay at AMS-02?

Conclusions

- The positron excess observed by AMS-02 remains unexplained;
- In this talk we showed different scenarios where two-component DM can provide a good fit to the data;
- We include several different approaches, including direct decay into SM particles and secluded scenarios;

Thank You!

Clarissa Siqueira

An evidence of dark matter decay at AMS-02?