

DARWIN: THE ULTIMATE LIQUID XENON DIRECT DETECTION EXPERIMENT

Sara Diglio on behalf of the DARWIN Collaboration

Subatech – Nantes

DARKWIN: 2nd – 13th September 2019, Natal

THE DIRECT DETECTION CHALLENGE

The WIMP DM hypothesis ...

- Galactic rotation curves suggest the Dark Matter forms an extended halo around galaxies
- Earth is passing through a halo of WIMPs
- We feel a WIMP 'wind' as we move through the halo

THE DIRECT DETECTION CHALLENGE

The WIMP DM hypothesis ...

- Galactic rotation curves suggest the Dark Matter forms an extended halo around galaxies
- Earth is passing through a halo of WIMPs
- We feel a WIMP 'wind' as we move through the halo
- We search for the rare collisions of WIMPs with target nuclei in detectors on Earth

THE DIRECT DETECTION PRINCIPLE

WIMPs elastically scatter off nuclei in targets, producing Nuclear Recoils (NR)

THE DIRECT DETECTION PRINCIPLE

WIMPs elastically scatter off nuclei in targets, producing Nuclear Recoils (NR)

THE STATE-OF-THE-ART OF THE WIMP LANDSCAPE

- LXe Dual Phase Time Projection Chambers detectors are leading the WIMP search above 5 GeV/c²
- Larger detectors needed to increase the sensitivity reach
- **DARWIN** is targeting the **ultimate WIMP discovery limit**

WHY XENON AS A DETECTOR MEDIUM?

- High mass number high rate for Spin Independent interactions (σ ~ A²)
- Intrinsically pure
 - no long-lived radioactive isotopes
 - ⁸⁵Kr that can be reduced to < ppt
- Self shielding high Z=54, high density ρ ~ 3 kg/l
- Odd-nucleon isotopes
 ¹²⁹Xe,¹³¹Xe for Spin
 Dependent Interactions
- "Easy" purification
- Scalability compact detectors, scalable to larger dimension

WHY XENON AS A DETECTOR MEDIUM?

- **High mass number** high rate for Spin Independent interactions ($\sigma \sim A^2$)
- Intrinsically pure
 - no long-lived radioactive isotopes
 - ⁸⁵Kr that can be reduced to < ppt
- Self shielding high Z=54, high density ρ ~ 3 kg/l
- **Odd-nucleon isotopes** ¹²⁹Xe,¹³¹Xe for Spin **Dependent Interactions**
- "Easy" purification
- σ_{s_i} [cm²] **Scalability** compact detectors, scalable to larger dimension

SCINTILLATION AND IONIZATION SIGNALS IN LXE

Sara Diglio

LXE DUAL PHASE TIME PROJECTION CHAMBER

Credits: Purdue University

(S2/S1)wIMP,n < (S2/S1)γ,β

S1: Prompt Scintillation (light)

LXE DUAL PHASE TIME PROJECTION CHAMBER

120

Time

XENON10	XENON100	XENON1T
2005—2007	2008—2016	2012 – 2019

Total mass : 25 kg	Total mass : 161 kg	Total mass : 3.2 t
Target mass: 14 kg	Target mass: 62 kg	Target mass: 2 t
Drift TPC: 15 cm	Drift TPC: 30 cm	Drift TPC: 96 cm
Limit ~ 10 ⁻⁴³ cm ²	Limit $\sim 10^{-45}$ cm ²	Limit ~ 10 ⁻⁴⁷ cm ²

Time

		lime		
		ΧΕΝΟΝ1Τ	XENONnT	
XLINOIN10	XENON100	XENONIT	ALINOINIII	
2005—2007	2008-2016	2012 – 2019	2017 – 2023	

Total mass : 25 kg	Total mass : 161 kg	Total mass : 3.2 t	Total mass : ~8 t
Target mass: 14 kg	Target mass: 62 kg	Target mass: 2 t	Target mass: ~6 t
Drift TPC: 15 cm	Drift TPC: 30 cm	Drift TPC: 96 cm	Drift TPC: 144 cm
Limit ~ 10 ⁻⁴³ cm ²	Limit ~ 10 ⁻⁴⁵ cm ²	Limit ~ 10 ⁻⁴⁷ cm ²	Sensitivity ~ 10 ⁻⁴⁸ cm ²

DARKWIN Conference 2019

LXETPCS AS WIMP DETECTORS SCALING

DARWIN BASELINE DESIGN

- 2.6 m x 2.6 m Dual Phase TPC
- 50 t (40 t active) LXe target
- Top & bottom arrays of photosensors
- Drift field ~0.5 kV/cm
- 14 m x 14 m water shield and neutron veto

DARWIN Collaboration, JCAP 1611 (2016) 017

BACKGROUND SOURCES

DARWIN

BACKGROUND SOURCES

BACKGROUND SOURCES

SPIN INDEPENDENT WIMP SENSITIVITY

- 30 t fiducial volume
- 99.98% ER rejection @ 30% NR acceptance
- Light yield 8 PE/keV @ 122 keV

DARWIN

SPIN DEPENDENT WIMP SENSITIVITY

- 30 t fiducial volume
- 99.98% ER rejection @ 30% NR acceptance
- Light yield 8 PE/keV @ 122 keV

Complementarity with the LHC @14 TeV

WIMP SPECTROSCOPY

- $m_{\chi} = 20, 100, 500 \text{ GeV/c}^2$
- 1σ/2σ Cl, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses > 500 GeV/c²

WIMP SPECTROSCOPY

- m_{χ} = 20, 100, 500 GeV/c²
- 1σ/2σ Cl, marginalized over astrophysical parameters
- due to flat WIMP spectra, no target can reconstruct masses > 500 GeV/c²

- Reconstruction improves considerably by adding Ge data to Xe
- Only minimal improvement for Ar

NEUTRINOLESS DOUBLE BETA DECAY

$$(A,Z) \longrightarrow (A,Z+2) + 2e^{-} + 2\bar{\nu_e}$$
$$(A,Z) \longrightarrow (A,Z+2) + 2e^{-}$$

- Test the nature of neutrinos: Majorana or Dirac particles?
- General approach: detect the two final-state electrons
- Signature: two simultaneous electrons with summed energy Q_{ββ}, the Q-value of the decay of the isotope under study

NEUTRINOLESS DOUBLE BETA DECAY

- ¹³⁶Xe/^{nat}Xe ~ 8.9%
- more than 3.5 t of active ¹³⁶Xe (with no enrichment)
- Q-value = 2.458 MeV
- Assumptions
 - 6 t fiducial mass \bigcirc
 - ²²²Rn: 0.1 µBq/kg \bigcirc
 - resolution ~1% @ Q-value \bigcirc
- Preliminary sensitivity @ 90% CL \circ T_{1/2} > 1.3 x 10²⁷ yr in 12 t y \circ T_{1/2} > 3.0 x 10²⁷ yr in 60 t y

(nEXO sensitivity prediction $T_{1/2} > 10^{28}$ yr in 20 t y)

LOW-ENERGY SOLAR NEUTRINOS

Test the energy production mechanism in the Sun via $v_{y} + e \rightarrow v_{y} + e$

- Expected rate at 2-30 keV, fiducial mass 30 t: pp neutrinos : 7.2 events/day , ⁷Be neutrinos : 0.9 events/day
- 2% (1%) statistical precision after 1 year (5 years) \rightarrow constrain solar models

FR

Electron-neutrino survival probability \rightarrow deviation from predictions would indicate new physics

COHERENT NEUTRINO NUCLEUS SCATTERING

CNNS is an irreducible bkg for WIMP searches: $v + N \rightarrow v + N$

- Impact on WIMP sensitivity
 - ⁸B solar neutrinos \rightarrow low WIMP masses
 - atmospheric neutrinos \rightarrow higher WIMP masses

DAR

COHERENT NEUTRINO NUCLEUS SCATTERING

SUPERNOVA NEUTRINOS

- Low threshold using proportional scintillation signal (S2) only
- Negligible background due to short burst (~sec)
- 5σ significance to a supernova burst far up to ~65 kpc from Earth
- Detection of all 6 neutrino species
- ~700 events for a $27M_{\odot}$ SN progenitor at 10 kpc

THE DARWIN COLLABORATION & CURRENT STATUS

- 29 groups from 12 countries
- DARWIN is in the APPEC roadmap
- 2 ERCs grants for R&D:
 - Xenoscope (UZH)
 - o ULTIMATE (UniFr)
- 6 Working Packages for perspective studies and R&D activities

THE DARWIN COLLABORATION & CURRENT STATUS

- 29 groups from 12 countries
- DARWIN is in the APPEC roadmap
- 2 ERCs grants for R&D: →
 - Xenoscope (UZH)
 - o ULTIMATE (UniFr)
- 6 Working Packages for perspective studies and R&D activities

- detector design
- photosensors technologies
- large scale demonstrators
- cryogenics
- ...

DARWIN CHALLENGES

DARWIN Collaboration, JCAP 1611 (2016) 017

- Top & bottom arrays of photosensors
 Alternatives to traditional PMTs (improving discrimination, radiopurity, cost, compactness,...)
- 2.6 m x 2.6 m Dual Phase TPC
 →high voltage, proportional scintillation
- 50 t (40 t active) LXe target
 → improving storage,
 purification, cooling

R&D ON PHOTOSENSORS

3D position reconstruction

^{83m}Kr (done) and ³⁷Ar (ongoing) calibrations

Sara Diglio

DARKWIN Conference 2019

FULL – (X,Y) DEMONSTRATOR

Courtesy of F. Tönnies

The main goal is to test components at the real DARWIN diameter under realistic conditions

- (X,Y) scale TPC
 - o diameter 2.6 m
 - height ~0.5 m
 - filled with ~400 kg of LXe
- Tests of
 - electrodes flatness
 - strength of the extraction field
 - (x,y) homogeneity of the extraction field

FULL - LENGTH DEMONSTRATOR

The main goal is the demonstration of the electron drift over the full height of DARWIN → z position reconstruction

- Full vertical scale TPC
 - height 2.6 m
 - diameter ~20 cm
 - \circ filled with ~300 kg of LXe
- Goal for electric field: 200 V/cm
- Required e-lifetime > 2 ms

XE RECOVERY AND STORAGE SYSTEM (RESTOX)

New Challenge for a 50 tons detector

- Just increasing the storage size is not reasonable → towards a modular approach
- Evaluating and testing the new concept of the LXe fast recovery by gravity

DARKWIN Conference 2019

SUMMARY

- DARWIN will be the ultimate low-background astroparticle physics observatory
- DARWIN will probe a variety of physics channels
 - Dark Matter
 - Neutrinoless double beta decay
 - Low energy solar neutrinos
 - Coherent neutrino nucleus scattering

— ...

- DARWIN is a challenging detector → R&D on different aspects are ongoing
- DARWIN is growing: currently 29 groups from 12 countries

SUMMARY

- DARWIN
- DARWIN will be the **ultimate low-background** astroparticle physics observatory

Backup

SOLAR AXIONS AND AXION-LIKE PARTICLES

DIRECT WIMP SENSITIVITY

Sensitivity to $0\nu 2\beta$

ARM

Is it possible to increase the sensitivity of the Neutrinoless double decay search without affecting (too much) the WIMPs search?

Sara Diglio

DARKWIN Conference 2019

Sensitivity study $S^{0\nu} = \frac{ln(2) \times N_a \times \epsilon \times enr}{\sigma_{CL} \times M_{molar}} \sqrt{\frac{exposure}{bkg_{index} \times \Delta E}}$

Physical constant:

- Na the Avogadro number (/mol)
- σ_{CL} factor to take into account the Confidence Level. 1.64 at 90% C.L

Isotope properties:

- M_{molar} the molar mass of ¹³⁶Xe
- enr is the 136Xe abundance (Natural: 8.9%)

Detector characteristics:

- ε = 0.8 is the detection efficiency
- exposure = 30 t.y is the running time of the experiment times the target mass
- ΔE is the FWHM energy resolution at the Q-value (2457 keV)

Backgrounds estimations:

 bkg_{index} is the number of background events per unit of time, mass and energy in the ROI ²²²Rn

- Main contributor in the $0\nu\beta\beta$ ROI -> ²¹⁴Bi
- Applying a BiPo tagging will reduce the ²¹⁴Bi & ²¹⁴Po contamination -> 99.8%

LOW-ENERGY SOLAR NEUTRINOS

- Expected rate at 2-30 keV, fiducial mass 30 t: pp neutrinos : 7.2 events/day , ⁷Be neutrinos : 0.9 events/day
- 2% (1%) statistical precision after 1 year (5 years) → constrain solar models
- Electron-neutrino survival probability
 → deviation from predictions would
 indicate new physics

NOBLE LIQUIDS DETECTORS CONCEPTS

WIMP SENSITIVITY

DARWIN

RATE & FORM FACTORS

For lighter targets a low energy threshold is of less relevance than for the heavier ones The form factor correction for a heavy target is more important than for light targets.

SIGNALS PRODUCTION IN NOBLE LIQUIDS

PSD is used in LAr experiment to improve the ER/NR discrimination

Noble Liquids Comparison

Noble Gas	LXe	LAr
Atomic mass [g/mol]	131.3	39.95
Density [g/cm ³]	3.06	1.40
Wavelenght [nm]	178	128
Average ionization energy W [eV]	15.6	23.3
Ionization Yield [e ⁻ /keV]	64	42
Scintillation Yield [photon/keV]	46	40

- Higher mass number in Xe wrt Ar \rightarrow higher WIMP rate in Xe
- Ar has a smaller wavelength emission light wrt Xe that requests a light shifter to allow its detection
- The average ionization energy (W) in LXe is smaller than the one in LAr
- The ionization and scintillation yields are highest in LXe

The drift field struggle

	XENON10	XENON100	LUX	XENON1T	DARWIN	
Drift length	15 cm	30.5 cm	48 cm	97 cm	260 cm	
Design field	1000 V/cm	1000 V/cm	2000 V/cm	1000 V/cm	500 V/cm	
Actual field	730 V/cm	530 V/cm	181 V/cm	117 V/cm	500 V/cm	60 V/cm
Actual V	11 kV	16.1 kV	8.7 kV	11.3 kV	130 kV	15 kV
	-	-				

Changing quantities

- Diffusion constant
- S1 pulse shape
- Drift velocity
- Electron lifetime

