

# ATLAS RESULTS OVERVIEW (w/ FOCUS ON DM)

Stefano Giagu for the ATLAS Collaboration DARKWIN 02.07.2019 - Natal, Brazil





## INTRODUCTION & OUTLINE

- beyond the SM and in particular for Dark Matter
  - exploiting the increase in data statistics from LHC Run 2
  - DM particles or DM mediators, searches for non-WIMP DM ...
- In this summary selected results on:
  - highlights on most recent ATLAS results: precision measurements, top, Higgs, searches
  - review of the status of the searches for signals from Dark Matter
  - future prospects

NOTE: impossible to cover in detail everything here. A full updated list of results from ATLAS available in: https://twiki.cern.ch/twiki/bin/view/AtlasPublic



• After the discovery of the Higgs in 2012 ATLAS has greatly intensified the search program for signs of physics

• engaging the problem from several sides: indirect searches from precision measurements, direct search for







## LHC RUN 2



### The Large Hadron Collider is a multipurpose and flexible machine Run 2 (2015-2018):



- 156 fb<sup>-1</sup> of proton-proton interactions delivered at  $\sqrt{s} = 13$  TeV

- Heavy Ions (2.3 nb<sup>-1</sup> @ 5 TeV Pb-Pb, p-Pb, Xe-Xe), low-pileup p-p, p-p for diffractive physics 3





## ATLAS DATA IN RUN 2

excellent data taking (94%) and data quality (95%) efficiencies







### **PRECISION TESTS OF THE SM**

TOP, EW/ QCD FLAVOUR PHYSICS

W→lv

### **EWSB**

- YUKAWA
- COUPLINGS
- **VH INTERACTIONS**
- **HIGGS POTENTIAL**

### BSM

- **DIRECT&INDIRECT**
- SEARCHES
- SUSY, ED, HV, ...
- DARK MATTER







# ATLAS DETECTOR IN RUN 2

- improved physics capabilities
- achieved excellent reconstruction performance up to very large pileup values (x3 above 25mdesign)

- widespread use of machine learning techniques for particle reconstruction & identification
- dedicated algorithms/calibrations for specific physics cases (low-p<sub>T</sub> leptons, hadronic taus, b-tagging, boosted hadronic objects, ...)



44m



### $Z \rightarrow ll candidate$ with $\mu = 65$





## **RECONSTRUCTION PERFORMANCE**

already reached sub-percent precisions in a large  $p_T$  range for jet, b-tagging and lepton reconstruction. Additional improvements expected soon





data-driven calibrations for muon efficiency and energy calibration of standard particle flow jets



## SM STATUS

Harvest of ATLAS cross section measurements confirms the predictive power of the SM

almost all theoretical calculations now at NNLO





arXiv:1903.10415

|                     | $\sigma = 96.07 \pm 0.18 \pm 0.91$ mb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| рр                  | $COMPETE HPR1R2 (theory)$ $\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb} (data)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                     | $\frac{\sigma}{100} = \frac{1000}{100} \pm \frac{1000}$ |                   |
|                     | DYNNLO + CT14NNLO (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| W                   | $\sigma = 112.09 \pm 3.1$ nD (data)<br>DYNNLO + CT14NNLO (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rı                |
|                     | $\sigma = 98.71 \pm 0.028 \pm 2.191$ nb (data)<br>DYNNLO + CT14NNLO (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                     | $\sigma = 58.43 \pm 0.03 \pm 1.66$ nb (data)<br>DYNNLO+CT14 NNLO (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| Ζ                   | $\sigma = 34.24 \pm 0.03 \pm 0.92$ nb (data)<br>DYNNLO+CT14 NNLO (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                     | $\sigma = 29.53 \pm 0.03 \pm 0.77$ nb (data)<br>DYNNLO+CT14 NNLO (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                     | $\sigma = 818 \pm 8 \pm 35 \text{ pb} \text{ (data)}$<br>top++ NNLO+NLL (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| tī                  | $\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} \text{ (data)}$<br>top++ NNLO+NNLL (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                     | $\sigma = 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)}$<br>top++ NNLO+NNLL (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
|                     | $\sigma = 247 \pm 6 \pm 46 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| t <sub>t-chan</sub> | $\sigma = 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| t chan              | $\sigma = 68 \pm 2 \pm 8 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                     | $\sigma = 130.04 \pm 1.7 \pm 10.6 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| <b>\</b> Λ/\Λ/      | $\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| ~~~~                | $\sigma = 51.9 \pm 2 \pm 4.4 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
|                     | $\sigma = 57 + 6 - 5.9 + 4 - 3.3 \text{ pb} (data)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|                     | $\sigma = 27.7 \pm 3 + 2.3 - 1.9 \text{ pb} \text{ (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                     | $\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                     | LHC-HXSWG YR4 (theory)<br>$\sigma = 94 \pm 10 + 28 - 23 \text{ pb (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| \//+                | NLO+NNLL (theory)<br>$\sigma = 23 \pm 1.3 + 3.4 - 3.7$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| ννι                 | NLO+NLL (theory)<br>$\sigma = 16.8 \pm 2.9 \pm 3.9$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                     | NLO+NLL (theory) $\sigma = 51 \pm 0.8 \pm 2.3$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| \\/7                | MATRIX (NNLO) (theory)<br>$\sigma = 24.3 \pm 0.6 \pm 0.9$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| VVZ                 | MATRIX (NNLO) (theory)<br>$\sigma = 19 + 1.4 - 1.3 + 1 \text{ pb} \text{ (data)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                     | MATRIX (NNLO) (theory)<br>$\sigma = 17.3 \pm 0.6 \pm 0.8$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| 77                  | Matrix (NNLO) & Sherpa (NLO) (theory)<br>$\sigma = 7.3 \pm 0.4 \pm 0.4 \pm 0.3$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| ZZ                  | NNLO (theory)<br>$\sigma = 6.7 \pm 0.7 \pm 0.5 = 0.4$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| +                   | $\sigma = 4.8 \pm 0.8 \pm 1.6 \pm 1.3$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| L <sub>s-chan</sub> | NLO+NNL (theory)<br>$\sigma = 870 \pm 130 \pm 140$ fb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                 |
| tŦW                 | $adgraph5 + aMCNLO (theory)$ $\sigma = 369 \pm 86 = 79 \pm 44 \text{ fb} (data)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|                     | MCFM (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| tīΖ                 | Madgraph5 + aMCNLO (theory)<br>$\sigma = 176 \pm 52 - 48 \pm 24$ fb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μ.                |
| +7:                 | HELAC-NLO (theory) $\sigma = 620 \pm 170 \pm 160$ fb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                 |
|                     | NLO+NLL (theory) $\sigma = 0.65 \pm 0.16 - 0.15 \pm 0.16 - 0.14 \text{ pb} (data)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                 |
|                     | Sherpa 2.2.2 (theory)<br>$\sigma = 0.55 \pm 0.14 \pm 0.15 - 0.13$ pb (data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| VVVVZ               | Sherpa 2.2.2 (theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>.</b><br>հով է |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 |
| ]                   | $10^{-4}$ $10^{-3}$ $10^{-2}$ $10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                 |



### Reference

PLB 761 (2016) 158 Nucl. Phys. B, 486-548 (2014 PLB 759 (2016) 601 arXiv: 1904.05631 EPJC 77 (2017) 367 JHEP 02 (2017) 117 JHEP 02 (2017) 117 JHEP 02 (2017) 117 PLB 761 (2016) 136 EPJC 74: 3109 (2014) EPJC 74: 3109 (2014) JHEP 04 (2017) 086 EPJC 77 (2017) 531 PRD 90, 112006 (2014) arXiv: 1905.04242 PLB 763, 114 (2016) PRD 87, 112001 (2013) PRL 113, 212001 (2014) ATLAS-CONF-2017-047 EPJC 76, 6 (2016) EPJC 76, 6 (2016) JHEP 01 (2018) 63 JHEP 01, 064 (2016) PLB 716, 142-159 (2012) PLB 761 (2016) 179 PLB 761 (2016) 179 EPJC 72, 2173 (2012) PLB 761 (2016) 179 PRD 97 (2018) 032005 JHEP 01, 099 (2017) JHEP 03, 128 (2013) PLB 735 (2014) 311 PLB 756, 228-246 (2016 PRD 99, 072009 (2019) JHEP 11, 172 (2015) PRD 99, 072009 (2019) JHEP 11, 172 (2015) PLB 780 (2018) 557 arXiv: 1903.10415 arXiv: 1903.10415



extends SM x-section tests over 14 orders of magnitude

ZZjj: very rare ( $\sigma$ <fb) but clean modes using Z decays to charged leptons; exploit multivariate analysis to separate EW signal from strong interaction background



### Zyjj electroweak production:

- sensitive to SM quartic gauge coupling diagram









## TOP PRECISION PHYSICS

**NEW PRECISION TOTAL X-SECTION MEASUREMENT** ATLAS-CONF-2019-041  $\sigma_{t\bar{t}} = 826 \pm 20 \, \text{pb}$ 2.4% uncertainty due to state of the art

 $\sigma(\text{NNLO}) = 832 \pm 45 \text{ pb}$ 

reconstruction performances for  $e/\mu$ 

### TOP QUARK DECAY WIDTH WITH FULL LHC RUN 2 DATASET



### CHARGE ASYMMETRY MEASUREMENT

ATLAS-CONF-2019-026

- resolved and boosted top-quark decays in lepton+jets events
  - asymmetry at LHC from higher order QCD effects from qqbar and qg initial states



## EXPLORING DIFFERENTIAL X-SECTIONS

high-precision measurement of differential  $Z\gamma$  diboson cross sections, probing EW gauge structure of SM and tests QCD







Higgs differential cross section measurements:  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ^* \rightarrow 4l$ - well described by POWHEG NNLO+PS up to 1 TeV - constrain EFT parameters and charm Yukawa coupling  $\rightarrow$  NP effects

ATLAS-CONF-2019-032



## PROBING NP WITH HIGH PRECISION HIGGS MEASUREMENTS

higgs sector directly connected with most important open questions of the SM: naturalness, vacuum stability & energy, flavour

a broad experimental programme that will extend till the end of HL-LHC ...

major progresses in the last year:

-observation of  $H \rightarrow bb$  decay -observation of ttH and VH productions

all major production and higgs decay modes now observed Higgs couplings measured at 10-20% precision









## PROBING NP WITH HIGH PRECISION HIGGS MEASUREMENTS

next frontier: test higgs interactions with lighter generation fermions



![](_page_11_Picture_3.jpeg)

 $H \rightarrow \mu\mu$ : challenging due to huge pp $\rightarrow Z/\gamma^* \rightarrow \mu\mu$  background using categories (jet multiplicity) + MVA discriminants

 $\frac{\sigma(\text{obs})}{\sigma(\text{SM})} = 0.5 \pm 0.7 \ (< 1.7 @95 \% \text{CL})$ 50% improvement wrt previous analysis (80 fb<sup>-1</sup>)

![](_page_11_Picture_8.jpeg)

12

# HIGGS SELF INTERACTIONS

### **SELF-COUPLINGS**

![](_page_12_Figure_2.jpeg)

$$-3.2 < k_{\lambda} = \frac{\lambda_{\text{HHH}}(\text{obs})}{\lambda_{\text{HHH}}(\text{SM})} < 11.9$$

![](_page_12_Picture_5.jpeg)

ATLAS-PHYS-PUB-2019-009

-5.0 < k<sub>λ</sub> < 12.0 @95% CL

arXiv:1906.02025 [hep-ex]

![](_page_12_Picture_10.jpeg)

# HIGGS SELF INTERACTIONS & NP

### $k_{\lambda}$ @ HL-LHC

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_3.jpeg)

arXiv:1902.00134 [hep-ph]

ATLAS-CONF-2019-030

### ATLAS NEW PHYSICS SEARCHES SUMMARY

### ATLAS Exotics Searches\* - 95% CL Upper Exclusion Limits

Status: May 2019

**Jets**<sup>†</sup>  $E_{T}^{miss} \int \mathcal{L} dt [fb^{-1}]$ Model  $\ell, \gamma$ Limit ADD  $G_{KK} + g/q$ 0 e, µ 1 – 4 j 36.1 7.7 TeV Yes n = 2ADD non-resonant  $\gamma\gamma$ 2γ 36.7 8.6 TeV n = 3 HI 7 NI 0\_ 2 j ADD QBH \_ 37.0 8.9 TeV \_ ADD BH high  $\sum p_T$  $\geq 1 e, \mu$ ≥ 2 j 3.2 8.2 TeV \_ July 2019 ADD BH multijet ≥ 3 j 3.6 9.55 TeV \_ \_ RS1  $G_{KK} \rightarrow \gamma \gamma$ 2γ 36.7 4.1 TeV \_ KK Mass Bulk RS  $G_{KK} \rightarrow WW/ZZ$ 36.1 2.3 TeV multi-channel кк mass Bulk RS  $G_{KK} \rightarrow WW \rightarrow qqqq$ 1.6 TeV 0 e,μ 2 J 139 \_ кк mass Bulk RS  $g_{KK} \rightarrow tt$  $1 e, \mu \ge 1 b, \ge 1 J/2j$  Yes 36.1 KK mass 3.8 TeV 1.8 TeV 2UED / RPP 1 e,μ  $\geq 2 \text{ b}, \geq 3 \text{ j}$  Yes 36.1 mass SSM  $Z' \rightarrow \ell \ell$ 2 e, µ 139 5.1 TeV 2.42 TeV SSM  $Z' \rightarrow \tau \tau$ 36.1 2τ mass Leptophobic  $Z' \rightarrow bb$ 2 b \_ 36.1 2.1 TeV mass Leptophobic  $Z' \rightarrow tt$ 3.0 TeV  $\geq 1$  b,  $\geq 1$ J/2j Yes 36.1  $1 e, \mu$ mass SSM  $W' \rightarrow \ell v$  $1 e, \mu$ Yes 139 6.0 TeV V' mass SSM  $W' \rightarrow \tau v$ 36.1 3.7 TeV  $1 \tau$ Yes N' mass HVT  $V' \rightarrow WZ \rightarrow qqqq$  model B 139 0 e,μ 2 J 3.6 TeV ' mass HVT  $V' \rightarrow WH/ZH$  model B 36.1 2.93 TeV multi-channel " mass LRSM  $W_R \rightarrow tb$ 36.1 multi-channel N<sub>R</sub> mass 3.25 TeV LRSM  $W_R \rightarrow \mu N_R$ 2 μ 1 J \_ 80 5.0 TeV V<sub>P</sub> mass CI qqqq 2 j 37.0 \_ \_  $\overline{O}$ Clllqq 2 e, µ 36.1 \_ \_ CI tttt ≥1 e,µ ≥1 b, ≥1 j Yes 36.1 2.57 TeV Axial-vector mediator (Dirac DM) 0 e,μ 1.55 TeV 1 – 4 j Yes 36.1 Colored scalar mediator (Dirac DM)  $0 e, \mu$ 1 – 4 j 36.1 1.67 TeV Yes  $VV_{\chi\chi}$  EFT (Dirac DM) 0 e,μ 1 J, ≤ 1 j 3.2 Yes 700 GeV Scalar reson.  $\phi \rightarrow t\chi$  (Dirac DM) 0-1 e,µ 1 b, 0-1 J 36.1 3.4 TeV Yes Scalar LQ 1st gen 1,2 e ≥ 2 j 36.1 1.4 TeV Yes Q 1,2 $\mu$ ≥ 2 j Scalar LQ 2<sup>nd</sup> gen Yes 36.1 1.56 TeV mass Scalar LQ 3<sup>rd</sup> gen 2 τ 2 b 36.1 ' mass 1.03 TeV \_ Scalar LQ 3<sup>rd</sup> gen 0-1 *e*,μ 2 b Yes 36.1 d mass 970 GeV VLQ  $TT \rightarrow Ht/Zt/Wb + X$ 1.37 TeV multi-channel 36.1 lass  $VLQ BB \rightarrow Wt/Zb + X$ 1.34 TeV multi-channel 36.1 mass  $\mathsf{VLQ} \ T_{5/3} \ T_{5/3} | T_{5/3} \to Wt + X$ 2(SS)/≥3 *e*,*µ* ≥1 b, ≥1 j 1.64 TeV Yes 36.1 5/3 mass  $\mathsf{VLQ} \ Y \to Wb + X$  $1 e, \mu \ge 1 b, \ge 1j$ Yes 36.1 1.85 TeV mass 1.21 TeV VLQ  $B \rightarrow Hb + X$ 79.8  $0 e, \mu, 2 \gamma \ge 1 b, \ge 1j$ Yes mass  $VLQ QQ \rightarrow WqWq$ ≥ 4 j Yes 20.3 1 e,μ 690 GeV Excited quark  $q^* \rightarrow qg$ 2 j 139 6.7 TeV \_ \_ Excited quark  $q^* \rightarrow q\gamma$  $1\gamma$ 1 j 36.7 5.3 TeV \_ mass Excited quark  $b^* \rightarrow bg$ 1 b, 1 j 36.1 2.6 TeV \_ \_ mass Excited lepton  $\ell^*$ 3 e,µ 20.3 \_ 3.0 TeV \_ Excited lepton v'1.6 TeV 3 e,μ,τ \_ \_ 20.3 Type III Seesaw ≥ 2 j 560 GeV 1 e,μ Yes 79.8 LRSM Majorana v 2μ 2 j 36.1 3.2 TeV \_ N<sub>R</sub> mass Higgs triplet  $H^{\pm\pm} \rightarrow \ell \ell$ 2,3,4  $e,\mu$  (SS) 36.1 870 GeV \_ Higgs triplet  $H^{\pm\pm} 
ightarrow \ell au$ 3 e,μ,τ 20.3 — 0 Multi-charged particles \_ 36.1 nulti-charged particle mass 1.22 TeV Magnetic monopoles 34.4 nonopole mass \_ 2.37 TeV \_ \_ \_ \_ \_ \_ √s = 13 TeV √s = 13 TeV √s = 8 TeV  $10^{-1}$ 10 partial data full data

![](_page_14_Picture_4.jpeg)

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ 

### both signature-based and model-targeted searches probed masses in the 1-10 TeV range

**ATLAS** Preliminary

 $\sqrt{s} = 8, 13 \text{ TeV}$ 

Reference

1711.03301 1707.04147

### ATLAS SUSY Searches\* - 95% CL Lower Limits

| Model                                                                                                                                           | S                         | ignatur                           | e ∫.                      | <i>L dt</i> [fb <sup>-</sup> | <sup>-1</sup> ]                                      |                                                | Mass lim                | it        |                  |      |          |                         |                                                |                                      |                                                                                          | Re             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|---------------------------|------------------------------|------------------------------------------------------|------------------------------------------------|-------------------------|-----------|------------------|------|----------|-------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|----------------|
| $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$                                                                                   | 0 <i>e</i> , <i>µ</i>     | 2-6 jets                          | $E_{T}^{\text{miss}}$     | 36.1                         | <i>q̃</i> [2×                                        | 8× Degen.]                                     |                         | 1         | 0.9              | 1    | 1.55     | I                       |                                                | n n                                  | $(\tilde{\chi}_1^0) < 100  \text{GeV}$                                                   |                |
|                                                                                                                                                 | mono-jet                  | 1-3 jets                          | $E_T^{\text{fmiss}}$      | 36.1                         | <i>q̃</i> [1×                                        | 8× Degen.]                                     | 0.43                    |           | 0.71             |      |          |                         |                                                | $m(\tilde{q})$                       | $-\mathbf{m}(\tilde{\chi}_1^0) = 5 \mathrm{GeV}$                                         |                |
| $\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$                                                                         | 0 <i>e</i> , <i>µ</i>     | 2-6 jets                          | $E_T^{\rm miss}$          | 36.1                         | ëg<br>ëg                                             |                                                |                         |           | Forbidden        |      | 0.95-1.6 | 2.0                     |                                                | m<br>m                               | $(\tilde{\chi}_{1}^{0}) < 200  \text{GeV}$<br>$(\tilde{\chi}_{1}^{0}) = 900  \text{GeV}$ |                |
| $\tilde{g}\tilde{g},  \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$                                                                 | 3 <i>e</i> , <i>µ</i>     | 4 jets                            | rmiss                     | 36.1                         | <i>ğ</i>                                             |                                                |                         |           |                  |      | 1        | .85                     |                                                | m                                    | $(\tilde{\chi}^{0}_{1}) < 800  \text{GeV}$                                               |                |
| ~~ ~                                                                                                                                            | ee,μμ<br>0 e μ            | 2  jets                           | $E_T^{\text{miss}}$       | 36.1                         | g<br>ã                                               |                                                |                         |           |                  | 1.   | 2        | 1.0                     |                                                | m(ĝ)-i                               | $m(\chi_1^{\circ}) = 50 \text{ GeV}$                                                     |                |
| $gg, g \rightarrow qq w Z x_1$                                                                                                                  | SS $e, \mu$               | 6 jets                            | $L_T$                     | 139                          | ğ<br>ğ                                               |                                                |                         |           |                  | 1.15 |          | 1.0                     |                                                | $m(\tilde{g})$ -m                    | $(\tilde{\chi}_1^0) = 200 \text{GeV}$                                                    | ATLA           |
| $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$                                                                            | 0-1 <i>e</i> ,μ           | 3 b                               | $E_T^{\rm miss}$          | 79.8                         | ĩg<br>ĩg                                             |                                                |                         |           |                  |      | 05       | 2.25                    | 5                                              | m                                    | $(\tilde{\chi}_1^0)$ <200 GeV                                                            | ATLA           |
|                                                                                                                                                 |                           |                                   |                           | 139                          | 8                                                    |                                                |                         |           |                  | -    | 20       |                         |                                                | m(g)-m                               | $(x_1) = 300 \text{ GeV}$                                                                | AILA           |
| $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$                                                  |                           | Multiple<br>Multiple              |                           | 36.1<br>36.1                 | $\tilde{b}_1$<br>$\tilde{b}_1$                       | Fo                                             | rbidden<br>Forbida      | len       | 0.9<br>0.58-0.82 |      |          | r                       | r<br>$n(\tilde{\chi}_{\pm}^{0})=300$           | $n(\tilde{\chi}_1^0) = 300  Ge$      | $PV, BR(b\tilde{\chi}_1^0)=1$<br>= BB $(t\tilde{\chi}_1^{\pm})=0.5$                      | 1708.0         |
|                                                                                                                                                 |                           | Multiple                          |                           | 139                          | $\tilde{b}_1$                                        |                                                | Forbido                 | len       | 0.74             |      |          | $m(\tilde{\chi}_1^0)$ = | =200 GeV, I                                    | $m(\tilde{\chi}_1^{\pm}) = 300  G$   | eV, BR $(t\tilde{\chi}_1^{\pm})=1$                                                       | ATLA           |
| $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$                                          | 0 <i>e</i> , <i>µ</i>     | 6 <i>b</i>                        | $E_T^{\rm miss}$          | 139                          | $\tilde{b}_1$                                        | Forbidden                                      |                         | 40        |                  | 0.23 | -1.35    |                         | $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ | =130 GeV, m                          | $(\tilde{\chi}_1^0) = 100 \text{ GeV}$                                                   | S              |
| $\tilde{z} \tilde{z} \tilde{z}$ , $W t \tilde{v}^0$ or $t \tilde{v}^0$                                                                          | 0-2eu                     | N-2 ipts/1-2 i                    | h Emiss                   | 36.1                         | $b_1$                                                |                                                | 0.23-0                  | .48       | 1                | 0    |          |                         | $\Delta m(\chi_2^2, \lambda)$                  | (1)=130 GeV,                         | $m(\tilde{\chi}_1^0) = 0 \text{ GeV}$                                                    | 1506.08616     |
| $i_1i_1, i_1 \rightarrow Wb\chi_1 \text{ of } i\chi_1$<br>$\tilde{i}_1\tilde{i}_1, \tilde{i}_1 \rightarrow Wb\tilde{\chi}_1^0$                  | $1 e, \mu$                | 3 jets/1 b                        | $E_T^{\text{miss}}$       | 139                          | $\tilde{t}_1$<br>$\tilde{t}_1$                       |                                                |                         | 0.44-0.59 | )                | .0   |          |                         |                                                | m                                    | $m(\chi_1) = 1 \text{ GeV}$<br>$m(\tilde{\chi}_1^0) = 400 \text{ GeV}$                   | ATLA           |
| $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b\nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$                                | $1 \tau + 1 e, \mu, \tau$ | 2 jets/1 b                        | $E_T^{\text{miss}}$       | 36.1                         | $\tilde{t}_1$                                        |                                                |                         |           |                  | 1.16 | 5        |                         |                                                | m                                    | $(\tilde{\tau}_1)$ =800 GeV                                                              |                |
| $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$           | 0 <i>e</i> , <i>µ</i>     | <b>2</b> <i>c</i>                 | $E_T^{\text{miss}}$       | 36.1                         | ĩ                                                    |                                                |                         |           | 0.85             |      |          |                         |                                                |                                      | $m(\tilde{\chi}_1^0)=0 \text{ GeV}$                                                      |                |
|                                                                                                                                                 | 0 <i>e</i> , <i>µ</i>     | mono-jet                          | $E_T^{\rm miss}$          | 36.1                         | $egin{array}{c} 	ilde{t}_1 \ 	ilde{t}_1 \end{array}$ |                                                | 0.43<br>0.43            | 46        |                  |      |          |                         |                                                | m(t                                  | $m(\tilde{\chi}_1^0) = 50 \text{ GeV}$<br>- $m(\tilde{\chi}_1^0) = 5 \text{ GeV}$        |                |
| $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$                                                                               | 1-2 <i>e</i> , µ          | 4 <i>b</i>                        | $E_{T}^{miss}$            | 36.1                         | Ĩ2                                                   |                                                |                         |           | 0.32-0.88        |      |          |                         | $m(\tilde{\chi}_{1}^{0})=0$                    | $eV_m(\tilde{t}_1)-m(t)$             | $(\tilde{\chi}_{1}^{0}) = 180 \text{ GeV}$                                               |                |
| $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$                                                                              | 3 <i>e</i> , µ            | 1 <i>b</i>                        | $E_T^{\text{miss}}$       | 139                          | $\tilde{t}_2$                                        |                                                | Forbic                  | lden      | 0.86             |      |          |                         | $m(\tilde{\chi}_{1}^{0})=360$                  | GeV, m( $\tilde{t}_1$ )-m            | $n(\tilde{\chi}_1^0) = 40 \text{ GeV}$                                                   | ATLA           |
| $	ilde{\chi}_1^{\pm} 	ilde{\chi}_2^0$ via WZ                                                                                                    | 2-3 e, µ                  |                                   | $E_{T}^{\text{miss}}$     | 36.1                         | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$              |                                                |                         | 0.        | 6                | Т    |          |                         |                                                |                                      | $m(\tilde{\chi}_1^0)=0$                                                                  | 1403           |
|                                                                                                                                                 | $ee, \mu\mu$              | $\geq 1$                          | $E_T^{\text{miss}}$       | 139                          | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$              | 0.205                                          |                         |           |                  |      |          |                         |                                                | $m(\widetilde{\mathcal{X}}_1^{\pm})$ | $-m(\tilde{\chi}_1^0)=5 \text{ GeV}$                                                     | ATLA           |
| $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via WW                                                                                              | 2 <i>e</i> , <i>µ</i>     |                                   | $E_T^{\text{miss}}$       | 139                          | $\tilde{\chi}_1^{\pm}$                               |                                                | 0.42                    |           |                  |      |          |                         |                                                |                                      | $m(\tilde{\chi}_1^0)=0$                                                                  | ATLA           |
| $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>                                                                                           | $0-1 \ e, \mu$            | 2 b/2 γ                           | $E_T^{\rm miss}$          | 139                          | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$              | Forbidden                                      |                         |           | 0.74             |      |          |                         |                                                | r                                    | $\mathfrak{m}(\tilde{\chi}_1^0) = 70 \text{ GeV}$                                        | ATLAS-CONF-201 |
| $\chi_1 \chi_1$ via $\ell_L / \tilde{\nu}$                                                                                                      | 2 e, µ                    |                                   | $E_T^{\text{miss}}$       | 139                          | $\chi_1^-$<br>$\tilde{\tau}$ [ $\tilde{\tau}_1$      | πa l                                           |                         | <b>`</b>  | 1.               | .0   |          |                         |                                                | m(ℓ,ĩ)=0.5                           | $(m(\mathcal{X}_1^+) + m(\mathcal{X}_1^\circ))$                                          | ATLA           |
| $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \chi_1$<br>$\tilde{\epsilon}$ $\tilde{\epsilon}$ $\tilde{\epsilon} \to \epsilon \tilde{\nu}^0$ | 27                        | 0 ipte                            | $E_T$<br>$E^{miss}$       | 139                          | ~ [' <u>[</u> ,                                      | 'R,LI                                          | 0.12-0.3                | ,         | 0.7              |      |          |                         |                                                |                                      | $m(\chi_1)=0$<br>$m(\tilde{\chi}^0)=0$                                                   |                |
| $\ell_{\mathrm{L},\mathrm{R}}\ell_{\mathrm{L},\mathrm{R}}, \ell \rightarrow \ell \chi_1$                                                        | 2 e,μ<br>2 e,μ            | $\geq 1$                          | $E_T^{T}$<br>$E_T^{miss}$ | 139                          | l<br>Ĩ                                               | 0.2                                            | 56                      |           | 0.7              |      |          |                         |                                                | $m(\tilde{\ell})$ -r                 | $m(\mathcal{X}_1)=0$<br>$m(\mathcal{\tilde{X}}_1^0)=10 \text{ GeV}$                      | ATLA           |
| $	ilde{H}	ilde{H},	ilde{H}{ ightarrow}h	ilde{G}/Z	ilde{G}$                                                                                      | 0 <i>e</i> , <i>µ</i>     | $\geq 3 b$                        | $E_T^{\rm miss}$          | 36.1                         | Ĩ                                                    | 0.13-0.23                                      |                         |           | 0.29-0.88        |      |          |                         |                                                | В                                    | $R(\tilde{\chi}_1^0 \to h\tilde{G})=1$                                                   |                |
|                                                                                                                                                 | 4 <i>e</i> , μ            | 0 jets                            | $E_T^{miss}$              | 36.1                         | Ĥ                                                    |                                                | 0.3                     |           |                  |      |          |                         |                                                | BI                                   | $R(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1$                                                 |                |
| Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$                                                               | Disapp. trk               | 1 jet                             | $E_T^{\rm miss}$          | 36.1                         | $\tilde{\chi}_1^{\pm}$                               |                                                | 0.4                     | 16        |                  |      |          |                         |                                                |                                      | Pure Wino                                                                                |                |
|                                                                                                                                                 |                           |                                   |                           |                              | $\chi_1 = 0$                                         | .15                                            |                         |           |                  |      |          |                         |                                                |                                      | Pure Higgsino                                                                            | AIL-PI         |
| Stable $\hat{g}$ R-hadron                                                                                                                       |                           | Multiple                          |                           | 36.1                         | ĝ                                                    |                                                |                         |           |                  |      |          | 2.0                     |                                                |                                      | ~0.                                                                                      | 1902.          |
| Metastable $\tilde{g}$ R-hadron, $\tilde{g} \rightarrow qq \chi_1^\circ$                                                                        |                           | Multiple                          |                           | 36.1                         | $g [\tau(g$                                          | ) =10 ns, 0.2 nsj                              |                         |           |                  |      |          | 2.05 2                  | 2.4                                            | m                                    | (X <sub>1</sub> )=100 GeV                                                                | 1/10.          |
| LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$                                                      | $e\mu,e	au,\mu	au$        |                                   |                           | 3.2                          | $\tilde{\nu}_{\tau}$                                 |                                                |                         |           |                  |      |          | 1.9                     |                                                | $\lambda'_{311} = 0.11, \lambda_1$   | 32/133/233=0.07                                                                          |                |
| $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$                                                   | 4 <i>e</i> , μ            | 0 jets                            | $E_T^{\rm miss}$          | 36.1                         | $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$              | $[\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ |                         |           | 0.82             |      | 1.33     |                         |                                                | m                                    | $(\tilde{\chi}_1^0)$ =100 GeV                                                            |                |
| $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$                                                | 4                         | -5 large- <i>R</i> je<br>Multiple | ts                        | 36.1                         | $\tilde{g} [m]$                                      | ℓ̃(1)=200 GeV, 1100 (<br>=2e-4, 2e-5]          | GeV]                    |           | 1                | 05   | 1.3      | 1.9                     |                                                | $m(\tilde{v}^0)$ 000                 | Large $\lambda_{112}''$                                                                  |                |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                         |                           | Multiple                          |                           | 00.1                         | $\tilde{\sigma} = [\lambda'']$                       | _20.4 10.2]                                    |                         | 0.55      | 1.               | .05  |          | 2.0                     |                                                | $m(x_1)=200$                         | Gev, bino-like                                                                           |                |
| $tt, t \to tX_1, X_1 \to tbs$<br>$\tilde{t}, \tilde{t},  \tilde{t} \to bs$                                                                      |                           | 2 jete ± 2 h                      |                           | 36.1<br>36.7                 | $\tilde{t} = \begin{bmatrix} n \\ 32 \end{bmatrix}$  | hs]                                            | 0.40                    | 0.55      | 1.               | .05  |          |                         |                                                | m(X <sub>1</sub> )=200               | GeV, bino-like                                                                           | AILA           |
| $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow 0$<br>$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow a\ell$                                | 2 e 11                    | 2 joi3 + 2 U                      |                           | 36.1                         | $\tilde{t}_1$ $\tilde{t}_2$                          | 0.0]                                           | 0.42                    | 0.0       |                  | 0    | 4-1.45   |                         |                                                | BB(t)-                               | <i>→be/bu</i> )>20%                                                                      |                |
| -1-1) •1 · 4.                                                                                                                                   | $1 \mu$                   | DV                                |                           | 136                          | $\tilde{t}_1$ [1e                                    | -10< $\lambda'_{23k}$ <1e-8, 3e                | $\lambda'_{23k}$ <3e-9] |           | 1.               | .0   | 1.6      |                         |                                                | $BR(\tilde{t}_1 \to q\mu) = 1$       | 100%, $\cos\theta_t = 1$                                                                 | ATLA           |
|                                                                                                                                                 |                           |                                   |                           |                              |                                                      |                                                |                         |           |                  |      |          |                         |                                                |                                      |                                                                                          |                |
| a coloction of the quallable me                                                                                                                 | non limite or i           | now state                         | 0.01                      | -                            | -1                                                   | I                                              |                         | I         |                  | 1    |          |                         |                                                |                                      |                                                                                          |                |
| a selection of the available ma<br>omena is shown. Many of the                                                                                  | limits are ba             | sed on                            | 5 01                      | I                            | 0                                                    |                                                |                         |           |                  | I    |          |                         | Ma                                             | ass sca                              | iie [iev]                                                                                |                |

![](_page_14_Picture_15.jpeg)

![](_page_14_Figure_16.jpeg)

# DIRECT SEARCHES FOR DM@LHC

DM LHC/COLLIDERS PARADIGM

if in some way DM particles interact with ordinary particles LHC can in principle produce them

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

at LHC we need something visibile to detect invisibile things ...

![](_page_15_Figure_6.jpeg)

ASSOCIATE **PRODUCTION OF** DM WITH SM PARTICLES

DM MEDIATOR **SEARCHES** 

![](_page_15_Picture_9.jpeg)

16

## DM BENCHMARKS

MODEL

![](_page_16_Figure_1.jpeg)

valid as long as we can integrate out higher-scale physics (mediator)

able to capture common aspects of different models depends on few parameters easy to compare with direct detection experiments

UV-complete models (ex. SUSY) results more sensitive to specific models but also more model dependent

![](_page_16_Figure_8.jpeg)

# MONO-X SEARCHES

Search strategy:

-look at ISR objects recoiling against DM system (MET)

- $-\alpha_s \gg \alpha \rightarrow$  larger signal yield in case of mono-Jet
- most sensitive channel for vector mediator DM

![](_page_17_Figure_5.jpeg)

Benchmark models:

- s-channel exchange of spin-1 mediator with axialvector (vector) couplings
- -t-channel scalar coloured mediator, spin 0
- sensitive to many other BSM scenarios

![](_page_17_Picture_10.jpeg)

<u>JHEP 01 (2018) 126</u>

![](_page_17_Figure_12.jpeg)

# **RESONANCES (DIJET/DILEPTON) SEARCHES**

affect di-jet /di-lepton spectra

![](_page_18_Figure_5.jpeg)

### A DI-JET EVENTS SEEN IN ATLAS

```
Run 2 2017

\sqrt{s} = 13 \text{ TeV}

m_{jj} = 9.3 \text{ TeV}

jet p<sub>T</sub> 2.9 TeV
```

![](_page_19_Picture_2.jpeg)

Run: 329716 Event: 857582452 2017-07-14 10:48:51 CEST

![](_page_19_Picture_4.jpeg)

![](_page_20_Figure_0.jpeg)

Phys. Rev. Lett. 121 (2018) 081801; Phys. Lett. B 795 (2019) 56

## COMBINATION

bounds on DM-mediator mass plane from mono-X and di-jet searches

### **VECTOR MEDIATOR**

![](_page_21_Figure_3.jpeg)

![](_page_21_Picture_5.jpeg)

**IMPORTANT:** ALL INTERPRETATIONS HIGHLY DEPENDENT ON ASSUMPTIONS!

### **AXIAL-VECTOR MEDIATOR**

PLB 796 (2019) 68

PRD 96, 052004 (2017) PRL 121 (2018) 0818016 Eur. Phys. J. C 77 (2017) 393 JHEP 1801 (2018) 126

![](_page_21_Picture_12.jpeg)

## **COMPLEMENTARITY WITH DIRECT SEARCHES**

### **VECTOR MEDIATOR**

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

ATLAS (95% CL) limits converted in spin independent or spin dependent X-nucleon cross-sections

### **AXIAL-VECTOR MEDIATOR**

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_10.jpeg)

## SCALAR MEDIATOR PROBES: DM + HF

![](_page_23_Picture_1.jpeg)

### most sensitive channel for spin 0, scalar or pseudo-scalar, color neutral mediator

![](_page_23_Figure_6.jpeg)

![](_page_23_Figure_7.jpeg)

![](_page_23_Picture_8.jpeg)

## DM THROUGH $H \rightarrow INVISIBLE$

- Search for Higgs decaying into WIMPs
  - connection with Dark Matter (or general hidden sectors) via Higgs or scalar portals
  - SM B(H $\rightarrow$ ZZ $\rightarrow$ 4v)~0.12%
  - most sensitive channel at LHC: VBF

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

Interpretation in the context of the Higgs Portal model  $B(H \rightarrow inv) \rightarrow \Gamma^{inv} \rightarrow couplings \rightarrow cross-section DM-Nucleon$ 

![](_page_24_Figure_8.jpeg)

![](_page_24_Figure_9.jpeg)

![](_page_24_Figure_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

## SUSY SEARCHES

- strong SUSY production in events with large hadronic activity and 0-leptons: sensitive to gluino/squark production
- electroweak SUSY production in events with multi-leptons: sensitive on EWKino production

![](_page_25_Figure_4.jpeg)

ATLAS-CONF-2019-040 *ATLAS-CONF-2019-008* ATLAS-CONF-2019-031

- a large number of analyses performed or onging in ATLAS, looking at very diverse signatures, two representative ones shown here:

- dominate if squark/gluinos are very heavy - events with 1 lepton + jets, 2 or more leptons and no jets + MET - discrimination based on based on stranverse and contransverse masses: M<sub>T2</sub>, M<sub>CT</sub>

- dedicated signal regions with ISR jets targeting "compressed" spectra

![](_page_25_Figure_9.jpeg)

![](_page_25_Figure_10.jpeg)

![](_page_25_Figure_11.jpeg)

![](_page_25_Picture_12.jpeg)

## SUSY SEARCHES

![](_page_26_Figure_1.jpeg)

### STRONG STOP PRODUCTION

## LIGHT DM SEARCHES THROUGH UNCONVENTIONAL SIGNATURES

unconventional signatures expected in many NP models that can provide viable solutions for DM:

- small phase space (ex. mass degeneracy in compressed SUSY models)
- -weak couplings, energy barriers, etc. (ex. dark/ hidden sectors)

a diverse set of signatures analysed in ATLAS: most of them requiring special triggers and/or dedicated reconstruction and non-standard analyses ...

![](_page_27_Picture_5.jpeg)

![](_page_27_Figure_6.jpeg)

here just two examples of such searches ...

![](_page_27_Picture_8.jpeg)

![](_page_27_Picture_12.jpeg)

## SEARCH FOR LONG-LIVED NEUTRAL PARTICLES

### **HEAVY** NEUTRAL LEPTONS

right-handed Majorana neutrinos give rise to type-I see-saw mechanism and provide DM candidates

- looks for lepton number conserved / violated decays with prompt / displaced leptons

![](_page_28_Figure_4.jpeg)

### **LIGHT** DARK PHOTONS

![](_page_28_Figure_6.jpeg)

- connection to the hidden sector through kinetic mixing ( $\epsilon$ )
- SM-dark-sector strength determines lifetime of dark photons
- predict low mass dark photons decays to collimated pair of

![](_page_28_Picture_10.jpeg)

**HLSF** 

![](_page_28_Picture_11.jpeg)

![](_page_28_Picture_12.jpeg)

![](_page_28_Picture_13.jpeg)

## PROSPECTS

LHC

![](_page_29_Figure_2.jpeg)

## DIRECT DM SEARCHES

### MONO JET

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_4.jpeg)

# OUTLOOK

- from ATLAS in Run 2

  - interactions
- No evidence of Dark Matter from multiple searches up to now, but ...
  - powerful constraints set on a variety of different benchmarks
  - dark sectors, ...)

![](_page_31_Picture_8.jpeg)

• An impressive set of precision measurements and searches for new physics effects

• analysis of the full dataset in full swing with already many results based on 2018 data • expand the exploration of possible physics BSM and our knowledge of nature of fundamental

• extension to searches beyond WIMP simplified models (less simplified and complete models,

• Run 2 data still under analysis and much more to come in Run 3 and HL-LHC (300, 3000 fb<sup>-1</sup>), with many regions still unexplored and substantial space available for surprises & discoveries!

![](_page_31_Picture_15.jpeg)

# ADDITIONAL MATERIAL

![](_page_32_Picture_1.jpeg)

# ATLAS UPGRADES

### PHASE I (RUN 3) UPGRADE

- new LAr calorimeter electronics finer segmentation available @L1 improves L1 calo trigger
- new inner end-caps muon system (New Small Wheel) reduce trigger rate from fake muons preserve resolution/efficiency @ HL-LHC
- trigger/DAQ

enhanced jet-rejectons/pile-up subtraction

improved muons trigger information fast inner detector tracking

![](_page_33_Picture_7.jpeg)

![](_page_33_Picture_9.jpeg)

## COMBINED MEASUREMENT OF SIMPLIFIED TEMPLATE CROSS SECTIONS (STXS)

STXS allow to combine different channels in well defined phase space regions\* with reduced theory input

\*incl. regions sensitive to new physics (such as high  $p_T$ ) that might not manifest itself in total cross-section

![](_page_34_Figure_3.jpeg)

![](_page_34_Picture_4.jpeg)

Total Stat. Syst. **ATLAS** Preliminary  $\begin{array}{c} +0.14 \\ -0.12 \\ +0.35 \\ +0.22 \\ -0.18 \\ +0.22 \\ +0.27 \\ -0.28 \\ +0.13 \\ +0.13 \\ +0.13 \\ +0.12 \\ -0.16 \\ -0.11, \\ -0.11 \\ +0.29 \\ +0.22 \\ +0.19 \\ -0.24 \\ -0.19, \\ -0.14 \end{array}$  $B_{\gamma\gamma}/B_{ZZ}$ 0.86  $\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$  $B_{b\overline{b}}/B_{ZZ}$ 0.63  $m_H = 125.09 \text{ GeV}, |y_u| < 2.5$  $B_{WW}/B_{ZZ}$ p<sub>sm</sub> = 89%  $B_{\tau^+\tau^-}/B_{ZZ}$ 0.87 **⊢**•–|Total Stat. Syst. SM Stat. Syst. Total  $^{+0.18}_{-0.17}$  ( $^{+0.16}_{-0.15}$ ,  $^{+0.09}_{-0.08}$ )  $gg \rightarrow H$ , 0-jet ×  $B_{ZZ}$ +0.43 (+0.37 -0.41 (-0.35, +0.23  $gg \rightarrow H$ , 1-jet,  $p_{\tau}^{H} < 60 \text{ GeV} \times B_{ZZ}$ -0.22)  $\begin{array}{c} +0.38 \\ -0.34 \\ +0.81 \\ -0.72 \end{array} \begin{pmatrix} +0.33 \\ -0.31, \\ +0.71 \\ -0.65, \end{array}$  $gg \rightarrow H$ , 1-jet, 60  $\leq p_{\tau}^{H} <$  120 GeV  $\times B_{ZZ}$ +0.18 0.87 -0.15<sup>)</sup> +0.39,  $gg \rightarrow H$ , 1-jet, 120  $\leq p_{\tau}^{H} < 200 \text{ GeV} \times B_{ZZ}$ 1.30 -0.30 +0.84 \_0.72 ( +0.73 \_0.64, +0.43 -0.32)  $gg \rightarrow H$ ,  $\geq$  1-jet,  $p_{\tau}^{H} \geq$  200 GeV  $\times B_{ZZ}$ 2.05  $^{+0.56}_{-0.51}$  ( $^{+0.46}_{-0.44}$ ,  $^{+0.32}_{-0.26}$ )  $gg \rightarrow H$ ,  $\geq$  2-jet,  $p_{\tau}^{H} < 200 \text{ GeV} \times B_{ZZ}$  $^{+0.45}_{-0.38}$  ( $^{+0.36}_{-0.32}$ ,  $^{+0.27}_{-0.21}$ )  $qq \rightarrow Hqq$ , VBF topo + Rest ×  $B_{77}$ 1.57  $-0.12 \begin{array}{c} +1.35 \\ -1.13 \end{array} \begin{pmatrix} +1.31 \\ -1.11 \end{pmatrix} \begin{array}{c} +0.32 \\ -0.24 \end{pmatrix}$  $qq \rightarrow Hqq$ , VH topo ×  $B_{ZZ}$ -0.95 <sup>+1.51</sup><sub>-1.48</sub> (<sup>+1.34</sup><sub>-1.29</sub>, <sup>+0.69</sup><sub>-0.72</sub>)  $qq \rightarrow Hqq, p_{\tau}^{j} \ge 200 \text{ GeV} \times B_{ZZ}$  $2.28 \begin{array}{c} +1.24 \\ -1.01 \end{array} \begin{pmatrix} +1.02 \\ -0.85 \end{array} \begin{array}{c} +0.71 \\ -0.55 \end{pmatrix}$  $qq \rightarrow HIv, p_{\tau}^{V} < 250 \text{ GeV} \times B_{ZZ}$ +2.32 (+1.44 +1.81 -1.19 (-1.00, -0.66)  $qq \rightarrow HIv, p_{\tau}^{V} \ge 250 \text{ GeV} \times B_{ZZ}$ 1.91  $^{+1.26}_{-1.57}$  ( $^{+1.01}_{-0.98}$ ,  $^{+0.76}_{-1.22}$ )  $gg/qq \rightarrow HII, p_{\tau}^{V} < 150 \text{ GeV} \times B_{ZZ}$  $^{+1.29}_{-1.13}$  ( $^{+1.02}_{-0.90}$ ,  $^{+0.79}_{-0.70}$ )  $gg/qq \rightarrow HII$ , 150  $\leq p_{\tau}^{V} < 250 \text{ GeV} \times B_{ZZ}$ 0.86  $^{+3.03}_{-1.50}$  ( $^{+1.87}_{-1.33}$ ,  $^{+2.38}_{-0.71}$ )  $gg/qq \rightarrow HII, p_{\tau}^{V} \ge 250 \text{ GeV} \times B_{ZZ}$ , +0.30 +0.39 +0.24  $|ttH + tH \times B_{77}|$ 1.44 -0.33 (-0.27, -0.19) -10 -5 0 10 15 Parameter normalized to SM value

![](_page_34_Picture_10.jpeg)

![](_page_34_Picture_11.jpeg)

### **ATLAS Long-lived Particle Searches\* - 95% CL Exclusion** Status: July 2019

### ATLAS LLP **SEARCHES SUMMARY**

study of LLPs is a new and very promising direction in the interests of the LHC community

|  |                            | Model                                                          | Signature                                      | ∫Ldt    |
|--|----------------------------|----------------------------------------------------------------|------------------------------------------------|---------|
|  |                            | $RPV\chi_1^0 \to eev/e\mu v/\mu\mu v$                          | displaced lepton pair                          | 20.3    |
|  | SUSY                       | $\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$                  | displaced vtx + jets                           | 20.3    |
|  |                            | $\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$                  | displaced dimuon                               | 32.9    |
|  |                            | GMSB                                                           | non-pointing or delayed $\gamma$               | 20.3    |
|  |                            | AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$ | disappearing track                             | 20.3    |
|  |                            | AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$ | disappearing track                             | 36.1    |
|  |                            | AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^-$ | large pixel dE/dx                              | 18.4    |
|  |                            | Stealth SUSY                                                   | 2 MS vertices                                  | 36.1    |
|  |                            | Split SUSY                                                     | large pixel dE/dx                              | 36.1    |
|  |                            | Split SUSY                                                     | displaced vtx + $E_{\rm T}^{\rm miss}$         | 32.8    |
|  |                            | Split SUSY                                                     | 0 $\ell$ , 2 – 6 jets + $E_{\rm T}^{\rm miss}$ | 36.1    |
|  |                            | $H \rightarrow s s$                                            | ow-EMF trk-less jets, MS v                     | tx 36.1 |
|  | %                          | FRVZ $H \rightarrow 2\gamma_d + X$                             | 2 $e$ –, $\mu$ –jets                           | 20.3    |
|  | Higgs BR = 10 <sup>o</sup> | FRVZ $H \rightarrow 2\gamma_d + X$                             | 2 $e$ –, $\mu$ –, $\pi$ –jets                  | 36.1    |
|  |                            | FRVZ $H  ightarrow 4\gamma_d + X$                              | 2 $e$ –, $\mu$ –, $\pi$ –jets                  | 36.1    |
|  |                            | $H \rightarrow Z_d Z_d$                                        | displaced dimuon                               | 32.9    |
|  |                            | $H \rightarrow ZZ_d$ 2                                         | 2 e, $\mu$ + low-EMF trackless j               | et 36.1 |
|  |                            | $VH$ with $H \rightarrow ss \rightarrow bbbb$                  | $1 - 2\ell$ + multi-b-jets                     | 36.1    |
|  | Scalar                     | $\Phi(200 \text{ GeV}) \rightarrow s s$                        | ow-EMF trk-less jets, MS v                     | tx 36.1 |
|  |                            | $\Phi(600 \text{ GeV}) \rightarrow s s$ I                      | ow-EMF trk-less jets, MS v                     | tx 36.1 |
|  |                            | $\Phi(1 \text{ TeV}) \rightarrow s s$ I                        | ow-EMF trk-less jets, MS v                     | tx 36.1 |
|  | Other                      | $HV Z'(1 \text{ TeV}) \rightarrow q_v q_v$                     | 2 ID/MS vertices                               | 20.3    |
|  |                            | HV $Z'$ (2 TeV) $ ightarrow q_{ m v} q_{ m v}$                 | 2 ID/MS vertices                               | 20.3    |
|  |                            |                                                                |                                                |         |

![](_page_35_Picture_4.jpeg)

\*Only a selection of the available lifetime limits is shown.

### **ATLAS** Preliminary

 $\int \mathcal{L} dt = (18.4 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$ 

![](_page_35_Figure_8.jpeg)

*τ* [ns]

![](_page_35_Picture_10.jpeg)

- 1504.03634

- 1504.03634

# DARK-SECTORS PROSPECTS

### **DISPLACED DARK-PHOTONS**

![](_page_36_Figure_2.jpeg)

![](_page_36_Picture_4.jpeg)

<u>ATL-PHYS-PUB-2019-002</u>

![](_page_36_Figure_6.jpeg)

![](_page_36_Figure_7.jpeg)

![](_page_36_Figure_8.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_37_Figure_2.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_37_Picture_5.jpeg)

## HIGGS / SUSY PROSPECTS

### HIGGS COUPLINGS

 $\sqrt{s} = 14 \text{ TeV}$ , 3000 fb<sup>-1</sup> per experiment

![](_page_38_Figure_3.jpeg)

![](_page_38_Picture_4.jpeg)

HL-LHC: is a Higgs factory for precision Higgs coupling measurements

### DISAPPEARING TRACKS

lightest chargino nearly degenerate with lightest neutralino, resulting in long chargino lifetimes)

striking experimental signature:

![](_page_38_Figure_9.jpeg)

![](_page_38_Figure_10.jpeg)

![](_page_38_Picture_11.jpeg)

![](_page_38_Picture_13.jpeg)

![](_page_38_Picture_14.jpeg)

![](_page_38_Picture_15.jpeg)

![](_page_38_Picture_16.jpeg)

![](_page_38_Picture_17.jpeg)

![](_page_38_Picture_18.jpeg)

![](_page_38_Picture_19.jpeg)

![](_page_38_Picture_20.jpeg)

![](_page_38_Picture_21.jpeg)

![](_page_38_Picture_22.jpeg)

![](_page_38_Picture_23.jpeg)