Anapole Dark Matter: A Collider Study using Machine Learning

Antonio C. O. Santos (UFPB)

Alexandre Alves (UNIFESP) and Kuver Sinha (Oklahoma U.)

September 6, 2019

Outlook

Dark Matter - Detection - LHC Events Simulation Anapole Dark Matter Conclusion

Outline

Collider detection of dark matter electromagnetic anapole moments

Alexandre Alves,^{1,2,*} A. C. O. Santos,^{2,3} and Kuver Sinha^{4,†}

¹Departamento de Física, Universidade Federal de São Paulo, Diadema-SP 09972-270, Brazil ²Departamento de Física, Universidade Federal da Paraiba, João Pessoa-PB, 58051-970, Brazil ³Centre for Cosmology, Particle Physics and Phenomenology (CP3), Universit catholique de Louvain, B-1348 Louvain-Ia-Neuve, Belgium

⁴Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA

Dark Matter Searches at Colliders - LHC

Dark Matter Searches at Colliders - LHC

 $p_1^{\mu} = (6.5 \text{ TeV}, 0, 0, 6.5 \text{ TeV}) \,, \ \ p_2^{\mu} = (6.5 \text{ TeV}, 0, 0, -6.5 \text{ TeV}) \,,$

where $p^{\mu} = (E, p_x, p_y, p_z)$.

Outline

Event Classification

- Sort blues.vs.red.
- How to discriminate?
- Decision boundary $y(\mathbf{x}) = y_{cut}$. What is best way to determine the boundary? Cuts over (x_1, x_2) ?

Figure: Proceedings, 69th Scottish Universities Summer School in Physics Phenomenology (SUSSP69): St.Andrews,Scotland, August 19-Sept

Anapole Dark Matt

Conclusion

XGBoost - Artificial intelligence/Machine Learning

dmlc XGBoost

Boosted Decision Trees (https://github.com/dmlc/xgboost)

dmlc XGBoost

Boosted Decision Trees (https://github.com/dmlc/xgboost)

$$\begin{split} \hat{y}_{i} &= \phi(\mathbf{x}_{i}) = \sum_{k=1}^{K} f_{k}(\mathbf{x}_{i}) \\ Obj(\phi) &= \sum_{i} l(\hat{y}_{i}, y_{i}) + \sum_{K} \Omega(f_{k}) \\ l(\hat{y}_{i}, y_{i}) &= (y_{i} - \hat{y}_{i})^{2} \quad (\text{e.g}) \\ \Omega &= \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_{j}^{2} \\ Obj_{\text{split}} &= \frac{1}{2} \left[\frac{\left(\sum_{iL} g_{iL}\right)^{2}}{\sum_{iL} h_{iL} + \lambda} + \frac{\left(\sum_{iR} g_{iR}\right)^{2}}{\sum_{iR} h_{iR} + \lambda} - \frac{\left(\sum_{i} g_{i}\right)^{2}}{\sum_{i} h_{i} + \lambda} \right] - \gamma \end{split}$$

Anapole Dark Matter: A Collider Study using Machine Learning

$$f_t(x) = w_{q(x)}$$
$$\rightarrow y^{\{t\}} = y^{\{t-1\}} + \epsilon f_t(x_i)$$

- Gradient Boosting Tree, Parameters:
 - Number of trees ;
 Maximum depth ;
 Learning Rate ;
 Minimum Child Weight .

- Antonio C. O. Santos (UFPB)

DARKWIN) CONFERENCE

dmlc XGBoost

Boosted Decision Trees(https://github.com/dmlc/xgboost)

dmlc XGBoost

• Boosted Decision Trees(https://github.com/dmlc/xgboost)

$$\begin{split} \hat{y}_{i} &= \phi(\mathbf{x}_{i}) = \sum_{k=1}^{K} f_{k}(\mathbf{x}_{i}) \\ Obj(\phi) &= \sum_{i} l(\hat{y}_{i}, y_{i}) + \sum_{K} \Omega(f_{k}) \\ l(\hat{y}_{i}, y_{i}) &= (y_{i} - \hat{y}_{i})^{2} \quad (\text{e.g}) \\ \Omega &= \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_{j}^{2} \\ Obj_{\text{split}} &= \frac{1}{2} \left[\frac{\left(\sum_{iL} g_{iL}\right)^{2}}{\sum_{iL} h_{iL} + \lambda} + \frac{\left(\sum_{iR} g_{iR}\right)^{2}}{\sum_{iR} h_{iR} + \lambda} - \frac{\left(\sum_{i} g_{i}\right)^{2}}{\sum_{i} h_{i} + \lambda} \right] - \gamma \end{split}$$

Anapole Dark Matter: A Collider Study using Machine Learning

$$f_t(x) = w_{q(x)}$$
$$\rightarrow y^{\{t\}} = y^{\{t-1\}} + \epsilon f_t(x_i)$$

- Gradient Boosting Tree, Parameters:
 - Number of trees ;
 Maximum depth ;
 Learning Rate ;
 Minimum Child Weight .

- Antonio C. O. Santos (UFPB)

DARKWIN) CONFERENCE

dmlc XGBoost

• Boosted Decision Trees(https://github.com/dmlc/xgboost)

$$\hat{y}_{i} = \phi(\mathbf{x}_{i}) = \sum_{k=1}^{\kappa} f_{k}(\mathbf{x}_{i})$$

$$Obj(\phi) = \sum_{i} l(\hat{y}_{i}, y_{i}) + \sum_{\kappa} \Omega(f_{k})$$

$$l(\hat{y}_{i}, y_{i}) = (y_{i} - \hat{y}_{i})^{2} \quad (e.g)$$

$$\Omega = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_{j}^{2}$$

$$Obj_{\text{split}} = \frac{1}{2} \left[\frac{\left(\sum_{iL} g_{iL}\right)^{2}}{\sum_{iL} h_{iL} + \lambda} + \frac{\left(\sum_{iR} g_{iR}\right)^{2}}{\sum_{iR} h_{iR} + \lambda} - \frac{\left(\sum_{i} g_{i}\right)^{2}}{\sum_{i} h_{i} + \lambda} \right] - \gamma$$

$$\text{Mumber of trees};$$

$$f(x) = w_{q(x)}$$

$$\rightarrow y^{\{t\}} = y^{\{t-1\}} + \epsilon f_{t}(x_{i})$$

$$\text{Gradient Boosting Tree, Parameters:}$$

$$Mumber of trees;$$

$$f(x) = \frac{1}{2} \left[\frac{\left(\sum_{iL} g_{iL}\right)^{2}}{\sum_{iL} h_{iL} + \lambda} + \frac{\left(\sum_{iR} g_{iR}\right)^{2}}{\sum_{iR} h_{iR} + \lambda} - \frac{\left(\sum_{iR} g_{iR}\right)^{2}}{\sum_{i} h_{i} + \lambda} - \gamma$$

Anapole Dark Matter: A Collider Study using Machine Learning - Antonio C. O. Santos (UFPB)

11/44

dmlc XGBoost

• Boosted Decision Trees(https://github.com/dmlc/xgboost)

$$\begin{split} \hat{y}_{i} &= \phi(\mathbf{x}_{i}) = \sum_{k=1}^{K} f_{k}(\mathbf{x}_{i}) \\ Obj(\phi) &= \sum_{i} l(\hat{y}_{i}, y_{i}) + \sum_{K} \Omega(f_{k}) \\ l(\hat{y}_{i}, y_{i}) &= (y_{i} - \hat{y}_{i})^{2} \quad (\text{e.g}) \\ \Omega &= \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{T} w_{j}^{2} \\ Obj_{\text{split}} &= \frac{1}{2} \left[\frac{\left(\sum_{iL} g_{iL}\right)^{2}}{\sum_{iL} h_{iL} + \lambda} + \frac{\left(\sum_{iR} g_{iR}\right)^{2}}{\sum_{iR} h_{iR} + \lambda} - \frac{\left(\sum_{i} g_{i}\right)^{2}}{\sum_{i} h_{i} + \lambda} \right] - \gamma \end{split}$$

Anapole Dark Matter: A Collider Study using Machine Learning

$$f_t(x) = w_{q(x)}$$
$$\rightarrow y^{\{t\}} = y^{\{t-1\}} + \epsilon f_t(x_i)$$

- Gradient Boosting Tree, Parameters:
 - Number of trees ;
 Maximum depth ;
 Learning Rate ;
 Minimum Child Weight .

- Antonio C. O. Santos (UFPB)

DARKWIN) CONFERENCE

Anapole Dark Matte

Conclusion

Automatic Tuning of Hyperparameters - Hyperopt

Average Validation Loss - TPE Algorithm

Figure: Hyperopt

Anapole Dark Matte

Anapole Dark Matt

Conclusion

Anapole Dark Matte

Anapole Dark Matt

Anapole Dark Matt

Anapole Dark Matte

Outline

 $pp \to Z + \gamma^* \to \ell^+ \ell^- + \chi \overline{\chi}$

Collider detection of dark matter electromagnetic anapole moments

Alexandre Alves,^{1,2,*} A. C. O. Santos,^{2,3} and Kuver Sinha^{4,†}

¹Departamento de Física, Universidade Federal de São Paulo, Diadema-SP 09972-270, Brazil ²Departamento de Física, Universidade Federal da Paraiba, João Pessoa-PB, 58051-970, Brazil ³Cente for Cosmology, Particle Physics and Phenomenology (CP3), Universit catholique de Louvain, B-1348 Louvain-Ia-Neuve, Belgium

⁴Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA

Classical Physics

$$\begin{aligned} \mathcal{H} &\propto -\mu(\vec{\sigma} \cdot \vec{B}) - d(\vec{\sigma} \cdot \vec{E}) - a(\vec{\sigma} \cdot (\vec{\nabla} \times \vec{B})) \\ \vec{A}(\vec{x}) &= \int d^3x' \frac{\vec{j}(\vec{x}')}{4\pi |\vec{x} - \vec{x}'|} \\ &= \int d^3x' \vec{j}(\vec{x}') \{1 - \vec{x}' \cdot \vec{\nabla} + \frac{1}{2} (\vec{x}' \cdot \vec{\nabla})^2 + \cdots \} \frac{1}{4\pi |\vec{x}|}. \end{aligned}$$

$$ec{a} = rac{M^2}{6} \int d^3 x^{'} ec{x}^{'} imes (ec{x}^{'} imes ec{j}(ec{x}^{'})), \quad \mu = rac{1}{2} \int ec{x}^{'} imes ec{j}(ec{x}) d^3 x.$$

Conclusion

Anapole Dark Matter

Current term $\overline{u}(\mathbf{p})\Gamma_{\mu}(q)u(\mathbf{p})$

$$\bar{u}(p_1)\mathcal{O}^{\mu}(q)u(p_2) = \bar{u}(p_1)\left\{F_1(q^2)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}}{2m}q_{\nu}F_2(q^2) + i\epsilon^{\mu\nu\alpha\beta}\frac{\sigma_{\alpha\beta}}{4m}q_{\nu}F_3(q^2) + \frac{1}{2m}\left(q^{\mu} - \frac{q^2}{2m}\gamma^{\mu}\right)\gamma_5F_4(q^2)\right\}u(p_2)$$

Figure: Anapole Dark Matter (CABRAL-ROSETTI; MONDRAGÓN; REYES-PÉREZ, 2016).

Chiu Man Ho and Robert J. Scherrer (e-print 1211.0503)

$${\cal L}_{int} = {g \over \Lambda^2} \, ar \chi \gamma^\mu \gamma^5 \chi \, \partial^
u F_{\mu
u} \, ,$$

Thus, we perform a mono-Z search in the leptonic channel at the LHC. Our signal is.

$$pp \to Z + \gamma^* \to \ell^+ \ell^- + \chi \overline{\chi}$$

where $\ell=\mu,e$ come from the Z boson and the dark matter pair from the virtual photon. The backgrounds considered in this work are

Irreducible:	$ZZ(\gamma^*) \to \ell^+ \ell^- + \nu_\ell \overline{\nu}_\ell$
Irreducible:	$W^+W^- \to \ell^+\ell'^- + \nu_\ell \overline{\nu}_{\ell'}$
Reducible:	$ZW \to \ell^{\pm} \ell^{\mp} \ell'^{\pm} + \nu_{\ell'}$
Reducible:	$t\bar{t} \to W^+ W^- b\bar{b} \to \ell^+ \ell'^- + \nu_\ell \overline{\nu}_{\ell'} + jj$

Triggers

 $p_T(\ell) > 20 \text{ GeV}, \ |\eta_\ell| < 2.5, \ \Delta R_{\ell\ell} > 0.4, \ E > 20 \text{ GeV}$

WEAK INTERACTIONS

Signals	100 GeV	200 GeV	300 GeV	400 GeV	500 GeV
$\sigma(fb)$	0.143	0.119	0.095	0.073	0.056
Backgrounds	ZZ	WW	ZW	$t\bar{t}$	Wt
$\sigma(fb)$	152.4	1.5×10^3	236.2	1.4×10^4	584.9

Table: $\mathcal{L} = 3ab^{-1}$, $m_{\chi} = (100 - 500) \text{ GeV}$ with $\Lambda = 1 \text{ TeV}$ e $\sqrt{s} = 13 \text{ TeV}$ (*LHC*).

 $N_{\text{events}} = \epsilon \times \sigma \times \mathcal{L}_{\text{int}},$

Sinal:	$pp \to Z + \gamma^* \to \ell^+ \ell^- + \chi \overline{\chi}$
rreducible:	$ZZ(\gamma^*) o \ell^+ \ell^- + \nu_\ell \overline{\nu}_\ell$
rreducible:	$W^+W^- ightarrow \ell^+\ell'^- + u_\ell \overline{ u}_{\ell'}$
Reducible:	$ZW \to \ell^{\pm} \ell^{\mp} \ell'^{\pm} + \nu_{\ell'}$
Reducible:	$t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow \ell^+\ell'^- + \nu_\ell \overline{\nu}_{\ell'} + jj$

Results Multivariate Analysis: Cuts + BDT

Variable	min	max	step
$\not\!$	50	150	1
$n_j(\leq)$	0	8	1
Number of Trees (\geq)	70	250	1
Maximum depth (\leq)	5	10	1
Learning Rate $(=)$	0.01	0.5	0.02
Minimum Child Weight (\leq)	1	10	1.

- Missing Energy $\not\!\!\!E_T$.
- Invariant Mass of the opposite sign leptons
- $|E_T p_T^Z| / p_T^Z$.
- $\Delta \phi(\ell^+, \ell^-).$

•
$$\alpha_T = E_T(\ell_2)/M_T.$$

• $\cos(\theta^*)$.

•
$$M_{T_c} = \sqrt{2 \left(\vec{p}_{T_\ell} \cdot \vec{p}_{T_\ell} + p_{T_\ell} p_{T_\ell} \right)}.$$

- n_{ℓ} , number of leptons.
- n_j , number jets.

Direct Detection

Direct Detection

 $d\sigma$

$$\begin{split} \frac{dR}{dE}(E,t) &= \frac{\rho_{\rm ME}}{m_{\rm ME}m_{A}} \int d^{3}v \ v f(\boldsymbol{v},t) \frac{d\sigma_{MN}}{dE}(E,v), \\ \mathcal{L}_{CI} &= \alpha_{q} \ \bar{\chi}\chi \ \bar{q}q \ \neq \ \frac{g}{\Lambda^{2}} \ \bar{\chi}\gamma^{\mu}\gamma^{5}\chi \ \partial^{\nu}F_{\mu\nu}. \\ \\ \frac{d\sigma}{dE_{R\,\rm Anapole}} &= \frac{1}{2\pi} \left(\frac{g}{\Lambda^{2}}\right)^{2} \ Z^{2} \ e^{2} \ m_{N} \ \left\{ 1 - \left(1 - \frac{2 \ M_{\chi N}^{2}}{m_{N}^{2}}\right) \frac{m_{N} \ E_{R}}{2 \ M_{\chi N}^{2} \ v^{2}} \right\} |F_{c}(E_{R})|^{2} \end{split}$$

$$\frac{d\sigma_{{}^{MN}}}{dE}(E,v)_{\rm CI} = \frac{m_{{}^{N}}}{2\mu_{{}^{2}}^{2}v^{2}}\sigma_{{}^{\rm SI}}^{{}^{\rm SI}}|F_{c}(E_{{}^{R}})|^{2}.$$

Anapole Dark Matter: A Collider Study using Machine Learning

Results - Direct Detection

Considering an effective Lagrangian,

$$\mathcal{L}_{\mathsf{DM-nucleon}} = rac{i\mathcal{A}}{2} \overline{\chi} \gamma^{\mu} \gamma^5 \chi \partial^{
u} F_{\mu
u} + e A_{\mu} J^{\mu}.$$

(DARKWIN) CONFERENCE

Simplified Model

$$\mathcal{L}_{\text{int}} = \lambda_{\scriptscriptstyle L} \widetilde{f}_{\scriptscriptstyle L}^* \overline{\chi} P_{\scriptscriptstyle L} f + \lambda_{\scriptscriptstyle R} \widetilde{f}_{\scriptscriptstyle R}^* \overline{\chi} P_{\scriptscriptstyle R} f + \text{c.c.} \quad m_{\widetilde{f}} \sim 250 \, \text{GeV} \to \Lambda \sim 800 \, \text{GeV}$$

$$\begin{pmatrix} \widetilde{f}_1\\ \widetilde{f}_2 \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \widetilde{f}_L\\ \widetilde{f}_R \end{pmatrix}.$$
$$\mathcal{M}^{\mu} = i\mathcal{A}(q^2)\overline{u}(p') \left(q^2\gamma^{\mu} - \oint q^{\mu}\right)\gamma^5 u(p).$$

$$\mathcal{A}(q^2) = e\left(|\lambda_L|^2 \cos^2 \alpha - |\lambda_R|^2 \sin^2 \alpha\right) X_1(q^2) + e\left(|\lambda_L|^2 \sin^2 \alpha - |\lambda_R|^2 \cos^2 \alpha\right) X_2(q^2)$$

DARK MATTER AND WEAK INTERACTIONS (DARKWIN) CONFERENCE

Simplified Model

$$\begin{aligned} \mathcal{A}(q^2) &= e\left(|\lambda_L|^2 \cos^2 \alpha - |\lambda_R|^2 \sin^2 \alpha\right) X_1(q^2) \\ &+ e\left(|\lambda_L|^2 \sin^2 \alpha - |\lambda_R|^2 \cos^2 \alpha\right) X_2(q^2) \end{aligned} \begin{cases} \Lambda^2 \sim 96\pi m_{\tilde{f}_1}^2, \\ g \sim \mu_1/\sqrt{\delta} \sim \mathcal{O}(1). \end{aligned}$$

Outline

Conclusions

- Considering 1% of systematics uncertainties, for a DM mass equal to 100 GeV, *LHC* can probe $\Lambda \lesssim 1.1 \,\mathrm{TeV}$, and for 5%, $\Lambda \lesssim 900 \,\mathrm{GeV}$, considering $\mathcal{L}_{\mathrm{int}} = 3 \, a b^{-1a}$. The discovery reach (5 σ) in Λ decreases approximately by 200 GeV for a given heavier DM mass.
- We compare the EFT with a simplified model. We choose a weakly coupled UV completion in which the DM is a Majorana fermion χ that couples to an uncolored fermion f (with mass m_f) and a pair of charged scalars $\tilde{f}_{L,R}$. At one loop, the DM couples to the photon through an anapole moment interaction.
- The *LHC* discovery potential were compared with the next generation of direct detection experiment, in particular, as an example, the LUX-ZEPLIN (2025). Showing that the *LHC* has competitive results.

*https://project-hl-lhc-industry.web.cern.ch/content/
project-schedule

Conclusion

Conclusions - Confirmed improvement

ML in HEP

THE TRANS

- Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already at LEP somewhat, much more at Tevatron (Trees)
- At LHC. Machine Learning used almost since first data taking (2010) for reconstruction and analysis
- In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
- For example, impact on Higgs boson sensitivity at LHC:

analysis	data	no ML	ML	ML
	taking year	sensitivity	sensitivity	data gain
ATLAS $H \rightarrow \gamma \gamma$ [16]	2011-2012	4.3		-
CMS $H \rightarrow \gamma \gamma$ [17]	2011-2012	?	2.7	?
ATLAS $H \rightarrow \tau^+ \tau^-$ [18]	2012	2.5	3.4	85%
CMS $H \rightarrow \tau^+ \tau^-$ [19]	2012	3.7	-	-
ATLAS VH \rightarrow bb [20]	2012	1.9	2.5	73%
ATLAS VH \rightarrow bb [21]	2015-2016	2.8	3.0	15%
CMS VH \rightarrow bb [22]	2012	1.4	2.1	125%
CMS VH \rightarrow bb [23]	2015-2016	-	2.8	-

\rightarrow ~50% gain on LHC running

Advances in ML in HEP, David Rousseau, Uppsala seminar, 25 Oct 2017

3

Figure: From David Rousseau LaL-Orsay

Discovery

Figure: http://static6. businessinsider.com/

Figure: https://www.marketwatch.
com/story/