
Non-Abelian anyons 
with non-Abelian gauge potentials?

The Laughlin ground-state has abelian 
excitations: the Berry phase is a 
number.

How we can make it a matrix?

First (poor man) guess: add a degree 
of freedom, i.e. consider a two-
component Bose gas, and put a non-
Abelian gauge potential

Well, not so easy…



Single-particle Hamiltonians

H= ( px +A x )
2
+( py +A y )

2

 

For a single component with only a magnetic field along z: 

Ax = 0 ; A y = Bx (Landau gauge )
or

Ax =−
B
2

y; A y =
B
2

x ( symmetric gauge )

Using two-component gases & rotations and/or tripod schemes
it is possible to have            2x2 matrices withAx , A y

[ Ax , A y ]≠ 0

Non-Abelian gauge potentials



2D atoms in a non-Abelian 
magnetic field: An example

H= ( px +A x )
2
+( py +A y )

2

Ax =q M x ; A y =B M y x

[A. Jacob et al., New J. Phys. (2008)]

An example: 

2x2 matrices 

Degeneracy of Landau 
levels is in general 
broken 

with 
M y = σ z ; M x = σ y



2D atoms in a symmetric non-Abelian 
magnetic field: single particle (I)

H= ( px +A x )
2
+ ( p y+A y )

2

Ax =qσ x−
B
2

y ; A y =qσ y+
B
2

x

A choice:

Reasons:

1) degeneracy of Landau levels not broken
 

2)  analytical single particle energy levels

3)  realistically implementable
[M. Burrello and A. Trombettoni, PRL (2010); PRA (2011)]

[Y.A. Bychkov and E.I. Rashba, J. Phys. C (1984)]



2D atoms in a symmetric non-Abelian 
magnetic field: single particle (II)

H= ( px +A x )
2
+ ( p y+A y )

2
≡Habel . +H non−abel .

Ax =qσx−
B
2

y ; A y =qσ y+
B
2

x

Degeneracy of Landau levels is preserved, although 
each level splits in two due to non-abelian term q

One finds
H abel.=2q2

+B+
1
4

d+d
(d+=B z̄−4 ∂/∂ z ; z=x+iy )

H non−abel.=q ( 0 id
−i d+ 0 )

ϵn
±=2Bn+2q2±√B2+8q2 Bn



2D atoms in a symmetric non-Abelian 
magnetic field: single particle (III)

H= ( px +A x )
2
+( py +A y )

2=H abel. +H non−abel .

Ax =qσ x−
B
2

y ; A y =qσ y+
B
2

x

Landau levels split in two due to non-abelian term q



2D atoms in non-Abelian 
magnetic fields: Adding the interactions

q=0     usual (“Abelian”) case with lowest 
Landau levels; (strong) interaction gives the 
Laughlin state

q finite        deformed Laughlin state

Ψ
m
=∏

j

G jΨL
m ; ΨL

m
=∏

i< j

(zi−z j)
me

−B
4 ∑i

∣zi∣
2

∣↓↓↓...↓〉

G≡c↑σ x +c↓d+ ; d=Bz−4 ∂/∂ z

c↑=B+2q√2B+√B2+8q2 B ; c↓=
i
2√2B

(B−2q√2B−√B2+8q2 B )

…but excitations are Abelian… 

where



At the degeneracy points, ground-states with 
non-Abelian excitations are found: a deformed 
Moore-Read

ΨMR=S (∏
i

G1, i∏
j

G 2, j)Pf ( 1
zi−z j

)∏i< j

(zi−z j)
2 e
−B
4 ∑i

∣zi∣
2

∣↓↓...↓〉

Non-Abelian excitations at 
the degeneracy points

[M. Burrello and A. Trombettoni, PRL (2010)]



Realization by purpose of field theories of 
interest as effective low-energy models in an 
experimental setup with highly tunable 
parameters

Quantum Simulations
of Field Theories



Ultracold bosons in an optical 
lattice

e.g., a 1D lattice 

It is possible to control:
- barrier height
- interaction term
- the shape of the network
- the dimensionality (1D, 2D, …)
- the tunneling among planes or 
among tubes (in order to have a 
layered structure)
…

V opt ( x)=V 0 sin
2(kx)



Effective Hamiltonian for ultracold 
fermions in optical lattices

Similarly, for a dilute single-species Fermi gas the effective  Hamiltonian is 

Notice that informations about the geometry and the Wannier functions are 
into the matrix A and the coefficients t, U: 

Ĥ=−t ∑
<i , j>

( ĉ i
+ ĉ j+h.c. )≡−t∑

i , j

A ij ĉi
+ ĉ j

t=−∫d r⃗ Φi
∗ ( r⃗ )[−ℏ

2

2m
∇ 2+V opt ( r⃗ )]Φ j ( r⃗ )

U=g0∫d r⃗∣Φi ( r⃗ )∣
4

( f≤1)
TIGHT-BINDING HAMILTONIAN



Graphene Graphite 

Carbon nanotubes Fullerene 

Graphene → honeycomb lattice of carbon atoms: 
π band is half-filled

lattice spacing 1.42 Angstroms
t~2.8 eV

v
F
~106m/s

[A.H. Castro-Neto et al., Rev. Mod. Phys. (2009)] 

Graphene physics: 
a very short reminder



The needed “ingredients” for the 
simulation of graphene with ultracold atoms...

 Bosons and/or fermions

 Geometry (1D / 2D)

 Long-range interactions

 Disorder 

 Time- and space- dependence of the parameters of the 
Hamiltonian

 Explicit tuning of the interactions via Feshbach 
resonances

 Simulate a magnetic field through a rotation or with 
optical tools

  Optical lattices (i.e., periodic potentials with minima of 
the potential located on a lattice) 



Quantum simulation of graphene 
properties (I) 

Implementable putting ultracold fermions 
in lattices having Dirac points 

e.g., in 2D, using the honeycomb lattice 
itself: using three optical lattices 

Tight-binding model on the honeycomb 
(alias, graphene)



Quantum simulation of graphene 
properties (II) 

[from S.L. Zhu, B. Wang, and L.-M. Duan, PRL (2007)] 



Experimental realization 

[L. Tarruell et al., Nature (2012) ] 



Ĥ=−t∑
i , j

A ij ĉ i
+ ĉ j

The 3D case 

Not a straigthforward generalization of the 2D case: indeed, having 
2D honeycomb coupled along the z-direction destroys in general the 
Dirac cones.

More formally: 

adjacency matrix of the 
graph [cfr. N. Biggs, 
Algebraic Graph Theory] 

−t∑
j

A ijϕα ( j )=ϵαϕα (i ) d̂α=∑⃗
j

ϕα ( j ) ĉ j⃗

Ĥ=∑
α
ϵα d̂α

+ d̂α



The requests are that:

i) the single particle spectrum has Dirac points 
(and cones) and the graph has spectral dimension 3

ii) that the the adjacency matrix has nearest- 
neighbour couplings

iii) not too many lasers are needed...

Although symmetries have been studied 
[A.A. Abrikosov and S.D. Beneslavskii, JETP (1970) – 

J.L. Manes, PRB (2012)], not easy to satisfy in practice 
i)-ii)-iii)...



For our purposes: single-species 
Fermi gas in a π-flux magnetic field

(at half filling)

Ĥ=−t ∑
<i , j>

ĉ i
+ e−i aij ĉ j+h.c.

a ij=∫
i

j

A⃗⋅d l⃗ B⃗≡rot A⃗=π (1,1,1 )

(we can also assume different hoppings t
x
, t

y
 and t

z 
along the 

three directions x, y and z)



Single-particle spectrum and Dirac 
cones (I)

E
k⃗
=±2√ t x

2 cos2 k x+ t y
2 cos2 k y+ t z

2 cos2 k z

Using the Hasegawa's gauge: 

A⃗=π (0,x− y , y−x )
 [Y. Hasegawa, J. Ph.Soc. Jap. (1990)]

one gets 

with k belonging to the first (magnetic) Brillouin zone. 



Single-particle spectrum and Dirac 
cones (II)

- For t
z 
=0 the results for the 2D case with π-flux are  

 retrieved [I. Affleck and ].B. Marston, PRB (1988)] are retrieved.

- Excitations around the two inequivalent Dirac points 
 obey the 3D Dirac equation.

 - In the limit of vanishing  t
z
 one retrieves the 2D Dirac 

 equation.
 
- A mass term can be added using a Bragg pulse.

- The Dirac points does not depend on t
x
, t

y
 and t

z
.

- With a spatial control of the synthetic magnetic 
field one can simulate e.m. coupling.



Adding a non-Abelian term (I)

Flux π of the Abelian magnetic potential B → Dirac cones, 
but no non-trivial topological phases with symmetry 
protected edge states

Ax =qσ x−
B
2

y ; A y =qσ y+
B
2

x



Adding a non-Abelian term (II)

Flux 2π/3 of the Abelian magnetic potential B → time-
reversal symmetry is broken, gap open, one has 
symmetry-protected edge modes and topological phase 
transitions between them (varying q)

PT symmetry does not have to be necessarily 
broken to have Weyl  semimetals! [L.  Lepori, I. C. Fulga, A.  
Trombettoni and  M. Burrello, arXiv: 1506.04761]

two lowest-energy states 
for different values of q
[M. Burrello, I. C. Fulga, E. Alba, L. Lepori, 
and A. Trombettoni, PRA (2013)]

Ax =qσ x−
B
2

y ; A y =qσ y+
B
2

x



Simulating a synthetic 
magnetic field:

 Using rotating traps

 With spatially dependent optical couplings 
between internal states of the atoms [Y.-J. Lin et al., 
Nature (2009)]
 



Laughlin ground-states for 2D 
gases in rotation 

H=∑
i

H i+g2Dℏω∑
i< j

δ (zi−z j)

Effect of a strong interaction:

For g2D→∞

ϕ( z1 , ... , zN)=∏
i< j
(zi−z j)ϕ̄ (z1 , ... , zN)→(ω−Ω)L z ϕ̄=E ϕ̄

ψ(z1 ,... , zN )=∏
i< j

(z i−z j)
2 e
−∑

i

∣zi∣
2
/4 l2 Laughlin 

wavefunction

ϕ̄=det (
1 z1 z1

2 ... z1
N

... ... ... ... ...

... ... ... ... ...
1 zN zN

2 ... z N
N)=∏i< j

(z i−z j)



Abelian excitations
Excitations of the Laughlin ground-state:

ψR 0
(z1 ,... , zN )=∏

i

(zi−R0)∏
i< j

(zi−z j)
2e
−∑

i

∣zi∣
2
/4 l2

For ultracold atomic systems, an hole in R0 can be 
created with a laser centered in R0; two 
excitations (say in R0 and R1) can be created 

or
one excitation can be moved - i.e., R0=R0(time) – 
around another       
 

a π/2 phase is acquired
 



In a non-abelian quantum Hall state quasi-particles obey 

non-abelian statistics, meaning that (for example):

with 2N quasi-particles at fixed positions, the ground state 

is 2N-degenerate

the interchange of quasi-particles shifts between ground 

states (i.e., permutations between quasi-particles 

positions      unitary transformations in the ground state 

subspace)

Non - Abelian excitations
[Moore and Read (1991)]

An example: Moore-Read 

states

H=∑
i
∑
j>i
∑
k > j

δ(zi−z j)δ(z j− zk )

ψ ( z1 , .. . ,zN )=∏
i<j

( zi−z j )
2∏

i
e
−∣z i∣

2/ 4l
2

⋅Pf ( 1
zi−z j

)



Rotation & artificial magnetic 
fields (I)

Magnetic field for 
charged particles

Rotation for 
neutral atoms 

~

Another tool for simulate magnetic fields for a two-
component Bose gas is purely optical: Rabi pulses couples 
two states with two dark states (tripod structure)

[see the review J. Dalibard, F. Gerbier, G. Juzelunas, and P. Ohberg, 
RMP (2011)]



Main available “ingredients”

 Bosons and/or fermions

 Geometry (1D / 2D)

 Long-range interactions

 Add disorder

Time-dependence (and to a certain extent space-dependence) 
  of the parameters of the Hamiltonian

 Explicit tuning of the interactions via Feshbach resonances

 Simulate a magnetic field through a rotation or 
 with optical tools

 Optical lattices (i.e., periodic potentials having minima located on   
   a lattice) 

 …



Rotation & artificial magnetic fields 
(III)

Other promising schemes: 
-optical flux lattices [N. Cooper, PRL (2011)] 

-generating a geometric phase with 
specific arrangements on lattices using 
two stable states [K. Osterloh et al., PRL (2005); M. 
Aidelsburger et al., PRL (2011)]

for this purpose Yb atoms can be useful [F. Gerbier and J. 
Dalibard, New J. Phys. (2010)]: two electronically-excited 
metastable states – 7 isotopic stable forms [5 bosons & 2 
fermions] – selective trapping of the two states 



Rotation & artificial magnetic 
fields (II)

i ℏ ∂Ψ
∂ t
=[

1
2m
(−i ℏ∇−A)2+V ]Ψ

A is a 2x2 matrix: 
A11=ℏ(cos

2
(ϕ)∇ S23+sin2

(ϕ)∇ S13)

A12=ℏcos (θ)(
1
2
sin (2ϕ)∇ S12−i∇ϕ)

A22=ℏ cos
2
(θ)(cos2

(ϕ)∇ S23+sin2
(ϕ)∇ S23)

Ω1=Ωsin(θ)cos (ϕ)e i S1

Ω2=Ωsin(θ)sin (ϕ)ei S2

Ω3=Ωcos (θ)e
i S3

Ψ=(ψ1

ψ2)



Diagonalization of the 
Hamiltonian



G’s operators



Ground-states at the degeneracy points



(Pf A )2=det A

Reminder on the Pfaffian 



Moore-Read states

[see Nayak and Wilczek, cond-mat/9605145] 



N.B. Requiring that for

1) energy spectrum presents a Landau level structure 
(and the wavefunctions can be expressed as finite sum 
of terms)
 
2) each Landau level is degenerate with respect to the 
angular   momentum 

3) in the Abelian limit, the Landau levels become 
degenerate with respect of the spin degree of freedom

[M. Burrello and A. Trombettoni, PRA (2011)]

H= ( px +A x )
2
+ ( p y+A y )

2

only two classes of Hamiltonians are found

H= (E+h z σ z ) d+ d+M z σ z−iqσ+ d+iqσ−d+

H= (E+h z σ z ) d+ d+M z σ z−iqσ+ d2+iqσ−d+2



Feshbach resonances

For dilute gases, the interaction between two 
particles in the same channel  (i.e., having the 
same quantum numbers) is

g0=
4 π ℏ2 a

m
V ( x⃗− y⃗ )≈g0 δ ( x⃗− y⃗ )

s-wave 
scattering 

length

The coupling with other (closed) channels 
modifies the s-wave scattering length:

e.g., for 
6Li

a = abackground (1− C
B−B0

)



Effective Hamiltonian for ultracold 
bosons in optical lattices (I)

Ĥ=∫ d r⃗ (ψ̂+ ( r⃗ )[−ℏ
2

2m
∇

2
+V opt ( r⃗ )] ψ̂ ( r⃗ )+g0 ψ̂

+ ( r⃗ ) ψ̂+ ( r⃗ ) ψ̂ ( r⃗ ) ψ̂ ( r⃗ ))
In second quantization, the full quantum many-body Hamiltonian is 

A very good description of (equilibrium and dynamical) low-energy 
properties – valid for large values of lattice height - is obtained using the 
Ansatz

ψ̂ ( r⃗ )=∑
i

b̂iΦi ( r⃗ )

Wannier functions 
(to be determined)

tight-binding Ansatz 
[D. Jaksch et al., PRL (1998)]

One gets...



n̂i≡b̂i
+ b̂i NT number of particles on N sites filling f=

NT

N
Bose-Hubbard Hamiltonian

Effective Hamiltonian for ultracold 
bosons in optical lattices (II)

Ĥ=−t ∑
<i , j>

( b̂i
+ b̂ j+h.c. )+

U
2∑i

n̂i( n̂i−1)

t/U>>1  Superfluid 
dynamics described by the discrete 
nonlinear Schroedinger equation  
[A. Trombettoni and A. Smerzi, PRL 
(2001)]

t/U<<1  Mott 
insulator quantum 
fluctuations dominate

increasing the scattering length 
or 

increasing the barrier height

the ratio U/t increases



Effects of attractive 
interaction for a 

two-species Fermi gas
Ĥ=−t ∑

σ=↑ ,↓
∑
<i , j>

(ĉ i ,σ
+ ĉ j ,σ+h.c. )−U∑

i

n i ,↑n i ,↓

As shown in [S. Sorella and E. Tosatti, Europhys. Lett (1992); E. Zhao and A. 

Paramekanti, PRL (2006) and I. Affleck and ].B. Marston, PRB (1988)], at half 
filling for the honeycomb there is superfluid 
behaviour only at a finite value of U: this is due to 
the vanishing density of states at the Dirac point.

At this critical value, a semimetal-superfluid 
transition takes place (i.e., a gap opens).



Mean-field results for the 3D case

(here t
x
=t

y
=t and 

a=t
z
/t)

Critical exponent 
at U

c
 is 1 in 3D 

and ½ in 2D (and 
1 for a non-
vanishing).
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