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Content of this course

1. Majorana fermions and Majorana bound 
states (MBSs): Basics        

2. Kitaev chain & realization in nanowires 
3. Majorana takes charge     

Coupling Cooper pair and Majorana dynamics through 
Coulomb charging energy

4. Topological Kondo effect   
Overscreened multi-channel Kondo physics with interacting 
MBSs  

5. Recent developments    
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Part I:  Introduction to Majorana fermions 
and MBSs

 What are Majorana fermions and Majorana 
bound states (MBSs)? 

 How are they described?
 How can they be realized?
 What properties do they have?
 Why should we care?



What are Majorana fermions ?
 Majorana fermion is its own antiparticle
 carries no charge
 real-valued solution of relativistic Dirac equation

 Elementary particle?
Perhaps neutrino ?

Double beta decay: 
For neutrino = antineutrino,
annihilation possible... 
Experiments remain unclear 

 Here: search for Majorana fermions as
emergent condensed matter quasiparticles
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Usual (Dirac) fermions…
 Pauli principle: each single-particle state can

be only filled by zero or one electron
 Eigenstates: 

 Fermion operator in 2nd quantization

Operator c annihilates particle (creates antiparticle)
Occupation number operator:                                        
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Majorana bound state (MBS)

 1st quantization: 
 2nd quantization:
What about Majorana fermions? 

→  E=0 (relative to chemical potential)  

 MBS = equal-weight superposition of 
electron and hole states,  zero mode (E=0)

(unlike exciton = bosonic e-h product state)

→ search in superconductors (SCs)
NB: For bosons, particle = antiparticle is standard situation (photons!)  

For fermions, nontrivial statement !
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Counting Majorana state occupations
Consider set of MBSs at different locations 
in space  
Self-adjoint operators
Clifford algebra
Different Majorana operators anticommute just 

like fermions 
But:
 annihilation of particle & antiparticle recovers previous 

state
 Occupation number of single MBS is ill-defined 
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So there is no Majorana sea (unlike Fermi sea) ...  
or perhaps there is?



Counting Majorana fermions

Count state of spatially separated MBS pair:
Non-local auxiliary fermion 

MBS = „half a fermion“,  
fractionalized zero mode

U(1) gauge freedom implies equally possible choice:
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Entanglement ?  [see talk by S. Plugge]



MBS in p-wave superconductors
 Bogoliubov quasiparticles in s-wave BCS SC

 At Fermi level: u=v
 Far away from Fermi level: 

either u→1 & v→0      or v→1 & u→0
[purely electron- or     hole-like]

 But spin spoils it: no MBS possible for s-wave SC!
 better: spinless quasiparticles in p-wave SC

 at Fermi level:
 Vortex in 2D p-wave SC hosts MBS
 Experimentally most promising route (at present): 
MBS end states of 1D p-wave SC (Kitaev chain)
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Kitaev chain:
„toy model“ for 1D p-wave SC

Tight-binding chain of spinless fermions

 Proximity-induced pairing gap ∆
 In 1D only fluctuating intrinsic SC →  induce pairing by 

proximity to bulk SC
 Hopping amplitude t>0, chemical potential μ
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Majorana representation
Consider N lattice sites, open boundary conditions
 To simplify algebra, first put Δ=t and μ=0
 Decompose lattice fermions into Majorana 

fermions
 short calculation gives

 MBSs at the ends don‘t appear!
zero modes
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Kitaev chain: Majorana end states

 Switch to new d fermions „shifting register“

 H diagonalized

 Nonlocal fermionic zero mode

represents decoupled MBSs at ends, zero energy
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Topological degeneracy
 All d-fermion states unoccupied in ground 

state (GS)
 Zero mode causes twofold GS degeneracy

Both GSs differ in fermion parity (even/odd)
Topological degeneracy
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Expectation values of local operators

 Arbitrary local operator A has locally 
indistinguishable expectation values             
(up to exponentially small corrections) 

 Proof: 
 Local operator has finite support
 Rewrite A in terms of d fermions (and possibly f) 

 f appears iff A has support near a boundary
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Nonlocal operators
 If A has no support near boundary:

same expectation values since

 Otherwise A has only support, say, near left 
boundary
Use again →  same expectation values for 
both GSs
→ only nonlocal operators can distinguish           
[or change → topological protection] the GSs
→ Basis for topological quantum computation
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Kitaev chain: Arbitrary parameters
 Topological phase persists for finite (not too 

large) μ and/or arbitrary ∆/t   (see later)
 MBS wavefunction: Exponential decay into bulk 

on lengthscale ξ
 Chain length L determines overlap between 

left/right MBS wavefunctions 
→  MBS hybridization

Then: exponentially small but finite-energy mode 
instead of true zero mode
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Fractional Josephson effect

 Topological degeneracy crucial ingredient for 
hallmark experiment of MBS physics: 
fractional Josephson effect

 First: brief reminder of standard Josephson 
effect in conventional s-wave BCS 
superconductors



Reminder: Josephson effect

 Tunnel contact (tunneling amplitude λ) 
separates s-wave SCs, phase difference φ

 Tunneling of Cooper pairs (2e) gives 2π
periodic Josephson energy

 Josephson DC supercurrent-phase relation   
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Now topological case
 Two tunnel-coupled Kitaev chains (∆=t, μ=0) 
 Boundary fermions connected by tunneling

 Insert effective low-energy form
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Projection to low-energy space
 Low energy space is spanned by MBSs →

 Andreev bound states (inside gap!) 

 Fractional Josephson effect:

 tunneling of „half a Cooper pair“ 
→  4π periodic Josephson current-phase relation
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Fractional Josephson effect
 Josephson effect via single-electron tunneling 

through zero mode 
 Highly unusual: supercurrent proportional to λ

 Two branches for different GS parity
 Hamiltonian has 2π periodicity 
 GS recovered only by advancing phase by 4π
 Parity conservation crucial for 4π periodicity
 Quasiparticle poisoning:                                             

boson-mediated transitions from Andreev-MBS sector 
to above-gap quasiparticles → flip parity  
2π periodicity restored at finite T (in stationary case) 



Nonlocality and degeneracy
Spatially separate 
Majorana pair yields
E=0 fermion mode

 Information stored non-
locally & topologically
protected

Ground state        is 
degenerate

 Even/odd number of
electrons (fermion
parity): same E=0

 Rotation in ground-
state manifold: 

E-µ

0

G



Nonabelian anyons  [see lectures by Ady Stern]

Example: four MBS = two parity qubits
 Start with initial state
 Braiding: rotation in ground-state manifold by

interchanging and

entangled state,
nonabelian exchange statistics

…could be useful for quantum computing … 
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Summary of Part I
 Basic features of Majorana „fermions“
 Fractionalized zero mode „particles“
 Counting MBS pairs via nonlocal fermions 
 Topological degeneracy, ground-state parity

 Realizable as end states of 1D p-wave SC: 
Kitaev chain

 Signatures: fractional Josephson effect, 
nonabelian exchange statistics, ...



Part II:  Kitaev chain 
1. Bulk 1D p-wave superconductor (SC)

Majorana end states reflect bulk topology: 
bulk-boundary correspondence

 Sensitivity of ground state to boundary conditions
 Bulk topological index 

2. Kitaev chain can be realized in lab
Semiconductor nanowires with strong spin-orbit 
coupling, Zeeman field, proximity coupled to 
conventional s-wave SC
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Bulk topology

MBSs mirror bulk topological features → 
consider ring: periodic BCs         (arbitrary parameters)  

[  1/2  : no double counting! ]
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BdG equation 
Diagonalize Hamiltonian

Quasiparticle operators
Bogoliubov-deGennes (BdG) equation

solved by
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Phase diagram of Kitaev chain
Topological phase transitions require gap 
closing    
two solutions:

 :  topologically trivial „strong pairing“ phase, 
adiabatically connected to vacuum

and              phases related by e-h symmetry        

 Topologically nontrivial „weak pairing“ regime 
(with MBSs under open BCs) contains μ=0 → 
corresponds to 
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Topological superconductor
 BdG Hamiltonian:
 Nambu „spin“ in „magnetic field“ 
 particle-hole symmetry requires:

→ field needed only for
 Within a gapped phase: study map from BZ 

to unit sphere 

values at k=0 and k=π restricted by  
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Z2 topological invariant

Follow field direction from k=0 to k=π
Either field stays near same pole (top. trivial) 
or explores whole sphere (top. nontrivial)

Z2 invariant
( )ππ ξξν 00 sgn== ss



Ground state: elementary derivation 

Solve for each k (decoupled even/odd parity sector)
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Sensitivity to boundary conditions 

k=0 unpaired fermion mode at
 μ > -t: Mode occupied →  odd parity GS
 Antiperiodic boundary conditions:                         

no k=0 mode exists, even parity GS 
Sensitivity to boundary conditions indicates 
topologically nontrivial phase 
No such sensitivity for μ < -t
 Then always even parity GS:

topologically trivial phase

µξ −−== tk 0



Interpolate between boundary conditions

Consider t→λ for one link of a Kitaev ring in 
topological phase:
 λ= - t: antiperiodic BC
 λ = 0: open BC 
 λ=+ t: periodic BC

 Changing λ from –t to +t, one must go 
through degenerate GS (with opposite 
fermion parity) 
 otherwise GS nondegenerate with finite gap



Long-wavelength continuum limit
 BdG Hamiltonian for small k: 

NB. dropping k2 terms is controlled approximation

 Construction of MBS: Consider spatially 
varying chemical potential
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Squaring trick
 To obtain spectrum, square BdG Hamiltonian 

 Choose Nambu basis: 
 1D harmonic oscillator:                                        
 Frequency:

 Eigenenergies (n=0,1,2,...)

( )( )
x

xBdG

px
ipxxppxH

ταα

ταα

∆+∆+=

−−∆+∆+=

24         
24

2222

22222

1±→xτ
222

2
1,4

2
1 αω →∆→ m
mαω ∆= 4

( )21212
, ±+=± nEn ω



Majorana bound state

 Zero energy solution 
 Localized around transition point x=0:

 BdG states: particle-hole symmetry encoded 
in                     .  This implies
 Majorana state at E=0 has                  
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How to realize Kitaev chain in the lab?

 1D spinless fermions: use half-metal or large 
Zeeman splitting? 
 but proximity effect from s-wave SCs then difficult

 Better: admixture of effective s- and p-wave 
pairing in 1D nanowires with 
 Strong (Rashba) spin-orbit coupling: InAs, InSb
 Magnetic Zeeman field 

 exploit large Landé factor for InAs, InSb
 Orientation not crucial (but not along spin-orbit axis)

 Proximity effect from close-by conventional          
s-wave SC:  Nb, NbTiN, ...



Rashba quantum wire (InAs, InSb) 

Semiconductor with strong SOI
s-wave superconductor

Oreg, Refael & von Oppen, PRL 2010
Lutchyn, Sau  & Das Sarma, PRL 2010



1D helical liquid and proximity effect
Without proximity coupling: 1D helical liquid
 Spin of fermion is enslaved by momentum direction
 Opposite momenta have (approximately) opposite spin 

 Now: include coupling to s-wave superconductor
 Gap closes and reopens at p=0:  B>Δ topological phase



BdG Hamiltonian

 Four-spinor combines spin and Nambu space 
 Necessary because of spin-orbit coupling
 Caution: avoid double counting! 
 „-“ sign highlights time-reversal symmetry  
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Dispersion
 B=∆=0: Shifted parabolas 
 ∆=0: gap opens near p=0
 Pair of (almost) helical states for μ in „gap“ at p=0
 Now: μ=0 and strong spin-orbit  

 Gap closing and reopening near p=0 
described by
 Squaring trick 
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Dispersion near p=0

 Gap closing at B=∆ signals topological phase 
transition

 B>∆ corresponds to topological phase of 
Kitaev chain: Majorana end states

 For finite μ: 
 One can tune Zeeman field or chemical potential 

to reach topological regime !
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How to detect Majorana states?

1. Fractional Josephson effect (but requires 
study of dynamics...)

2. Zero bias anomaly in tunneling 
conductance (or related features)

3. Nonlocal effects in interacting devices, e.g. 
topological Kondo physics



Zero bias anomaly (ZBA)

Tunneling into Majorana state from a normal lead

Topological superconductor Normal lead

V

Spin up along y

Spin down along y



ZBA conductance peak

Tunneling Hamiltonian

Transport signature of Majoranas: 
Zero-bias conductance peak due to resonant 
Andreev reflection Bolech & Demler, PRL 2007   

Law, Lee & Ng, PRL 2009              
Flensberg, PRB 2010( )
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Experimental Majorana signatures
InAs or InSb nanowires expected to 
host Majoranas due to interplay of
• strong Rashba spin orbit field
• magnetic Zeeman field
• proximity-induced pairing

Oreg, Refael & von Oppen, PRL 2010
Lutchyn, Sau & Das Sarma, PRL 2010

Transport signature of Majoranas: 
Zero-bias conductance peak due 
to resonant Andreev reflection

Bolech & Demler, PRL 2007
Law, Lee & Ng, PRL 2009
Flensberg, PRB 2010

Mourik et al., Science 2012

see also: Rokhinson et al., Nat. Phys. 2012; Deng et al., 
Nano Lett. 2012; Das et al., Nat. Phys. 2012; Churchill et 
al., PRB 2013; Nadj-Perge et al., Science 2014



Zero-bias conductance peak

Possible explanations: 
 Majorana state (most likely)
 Disorder-induced peak Bagrets & Altland, PRL 2012

 Smooth confinement Kells, Meidan & Brouwer, PRB 2012

 Kondo effect Lee et al., PRL 2012

Mourik et al., Science 2012



Conclusions Part II
 Bulk-boundary correspondence: Kitaev chain

 Bulk topological phase: Z2 topological invariant, 
sensitivity to boundary conditions

 Realization of Kitaev chain in semiconductor 
nanowires with
1. strong spin-orbit coupling
2. sufficiently (but not too) strong magnetic Zeeman 

field
3. and proximity-induced superconductivity

 Experimental signature: Zero-bias anomaly in 
tunneling conductance 
 resonant Andreev reflection



Part III: Majorana takes charge

 So far (effectively) noninteracting problem
 Effect of e-e interaction on Majorana fermions 
 Interactions couple Majorana and Cooper pair 

dynamics 
 Consider charging energy in floating (not 

grounded) device hosting MBSs
 Results in novel nonlocal effects

 Simplest case: Majorana single-charge 
transistor Fu, PRL 2010;   Hützen, Zazunov, Braunecker, 

Levy Yeyati & Egger, PRL 2012



Transport beyond ZBA
 Coulomb interactions: floating device
 Simplest: Majorana single-charge transistor
 Overhanging helical wire parts:

normal leads tunnel-coupled to MBSs
 Nanowire part in proximity to           

superconductor hosts two MBSs
 Include charging energy of floating                  

Majorana island
 Low energy: no quasiparticles
 For now assume no MBS overlap

γL γR



Charging energy

Two zero modes:
1.  Majorana bound states

2. Cooper pair number &  conjugate    
superconductor phase 

(gate parameter ng)

Majorana fermions couple to Cooper pairs     
through the charging energy
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Absence of even-odd effect
 Without MBSs: Even-odd effect
 With MBSs: no even-odd effect!
 Tuning wire parameters into the topological phase

removes even-odd effect
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Leads & Tunneling Hamiltonian

 Normal lead  tunnel-coupled to MBS
 Can be described as spinless helical wire 

 Applied bias voltage = chemical potential difference

 Electron tunneling from lead to island 
 Low energies: tunneling only proceeds via MBS 
 Project electron operator in TS to Majorana sector
 MBS spin structure contained in tunneling 

amplitude



Tunneling Hamiltonian

Source (drain) couples to left (right) MBS only.
First guess:

 Hybridizations between leads and island: 
 Linewidth of zero mode:
Re-express using f fermion &

take charge conservation into account: 
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Cooper pair splitting operator

But: charge conserved
in floating device!



Gauge choice

Using different gauge

instead gives

Majorana mode appears charge neutral in this gauge
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Majorana Meir-Wingreen formula

 Exact expression for interacting case

 Lead Fermi distribution encoded in 
 Computation of retarded Majorana Green‘s function 

required 
 Differential conductance:
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Noninteracting case: 
Resonant Andreev reflection
 EC=0: Majorana spectral function

 T=0 nonlinear differential conductance: 

 Currents IL and IR fluctuate independently, 
superconductor effectively grounded

 Decoupling of currents for all cumulants (FCS) in 
noninteracting case:  Currents flow to ground

Bolech & Demler, PRL 2007
Law, Lee & Ng, PRL 2009
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Strong blockade: Electron teleportation

 Peak conductance for half-integer ng

 Strong charging energy then allows only two
degenerate charge configurations

 Model maps to spinless resonant tunneling
model

 Linear conductance (T=0):
 Halving of peak conductance compared to non-

interacting case
 Interpretation: Electron teleportation due to 

nonlocality of fermion zero mode f

heG /2=

Fu, PRL 2010



Crossover from resonant Andreev 
reflection to electron teleportation
 Semiclassical approach to phase dynamics 

Zazunov, Levy Yeyati & Egger, PRB 2011

 Practically useful in weak Coulomb blockade regime: 
interaction corrections to conductance

 Full crossover from three other methods:            
Hützen, Zazunov, Braunecker, Levy Yeyati & Egger,  PRL 2012

 Master equation for T>Γ: include sequential and all 
cotunneling processes (incl. local and crossed 
Andreev reflection)

 Equation of motion approach for peak conductance
 Zero bandwidth model for leads: exact solution 



Weak Coulomb blockade regime
 Phase fluctuations are small & allow for 

semiclassical expansion
 no dependence on gate parameter yet

 Results in Langevin equation for phase 
dynamics

 Inverse RC time of effective circuit:
 Dimensionless damping strength

(higher energy scales: damping retardation!)
 Gaussian random force
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How to obtain the current…
K has lengthy expression…
 in equilibrium satisfies fluctuation dissipation

theorem

 Current:

solution for given noise realization
 Some algebra:
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Nonlinear conductance

 Symmetric system @ T=0 
 Observable: 

 Noninteracting case (resonant Andreev reflection):

 Analytical result for : universal power law
suppression of linear conductance with increasing
charging energy
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Linear conductance: numerics

analytical result
numerics

interaction induced suppression



Nonlinear conductance



Strong Coulomb blockade
 Strong Coulomb effects are beyond 

semiclassical expansion 
 Winding numbers: dependence on gate parameter

 For T, eV > Г : master equation approach
 Stationary probabilities for                               

particles on island obey master equation  

 Rates include sequential tunneling, cotunneling, 
and Andreev reflection processes from systematic 
expansion in Г

( ) ( ) ( ) ( )[ ] 0'''
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≠QQ

QPQQWQPQQW
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Rates entering master equation
 Sequential tunneling processes: Golden rule

 Elastic Cotunneling: transfer of electron from left to 
right lead by „tunneling“ through island with given Q
 Intermediate virtual excitation of island
 EC rates don‘t enter master equation but show up in current
 Usually EC strongly suppressed by quasiparticle gap, but 

Majorana modes yield important EC contributions to 
conductance ! 
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Andreev reflection (AR) rates

 Local AR: Electron and hole from same lead combine to form 
Cooper pair (or reverse process)

 Crossed AR: Electron and hole are from different leads

 Example: CAR rate
(regularization by principal-value integration necessary)

( ) ∑
=

±→±→ +=±→
RLj

QQ
LARj

QQ
CAR WWQQW

,

2
,

22

( ) ( ) ( )( )

( ) ( )
2

11

2
2

'
11                      

'''
8

QQQQ

QQRL
RLQQ

CAR

EEEEEE

EEEEEfEfdEdEW

−−
+

−−
×

−−+−−
ΓΓ

=

++

+
+→ ∫∫ δµµ

π



Coulomb oscillations Master equation

Γ= 2T



Valley conductance
 Analytical result for valley lineshape in strong 

Coulomb blockade limit

 Small deviation from valley center: 
 Dominated by Elastic Cotunneling
 Andreev reflection processes are strongly 

suppressed by Coulomb effects
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Finite T conductance peak

Master equation for strong charging: 
sequential tunneling yields peak lineshape

 Noninteracting peak value twice larger
 Strong thermal suppression of peak
 In addition interaction-induced suppression
 Halved peak conductance in strong charging limit

also for finite T
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2
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1
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Peak conductance at T=0: from resonant 
Andreev reflection to teleportation

T=0



Finite bias sidepeaks

Master equation

Γ= 2T

1=gn
2/1=gn



Finite bias sidepeaks

 On resonance: sidepeaks at
 resonant with two (almost) degenerate

higher order charge states: additional sequential
tunneling contributions

 Requires change of Cooper pair number – only 
possible due to MBSs:                                  
without Majoranas no side-peaks 

 Similar sidepeaks away from resonance
 Peak location depends in characteristic way

on magnetic field

CnEeV 4=

RL,µ



Summary Part III

 Coulomb charging effects couple Cooper pair 
dynamics to Majorana fermions

 Simplest case: Majorana single-charge 
transistor (two MBSs)

 Teleportation vs resonant Andreev reflection
 Nonlocality determines transport for strong 

charging energy
 Crossover between teleportation and resonant 

Andreev reflection



Part IV: Topological Kondo effect
 For more than two MBSs on a floating SC: 

„quantum impurity spin“ nonlocally encoded by 
MBSs

 Couple „spin“ to normal leads: Cotunneling 
causes „exchange coupling“

 Stable non-Fermi liquid (multi-channel type)       
Kondo effect 

 observable in electric conductance 
measurements Beri & Cooper, PRL 2012

Altland & Egger, PRL 2013;  Beri, PRL 2013
Altland, Beri, Egger & Tsvelik,  PRL 2014

Zazunov, Altland & Egger, New J. Phys. 2014
Eriksson, Mora, Zazunov & Egger, PRL 2014

Buccheri, Babuijan, Korepin, Sodano & Trombettoni, Nucl. Phys. B  2015



Quantum impurity „spin“ with MBSs

 Now N>1 helical wires:  M Majorana states tunnel-
coupled to helical Luttinger liquid wires with g≤1

 Strong charging energy, with nearly integer ng: 
unique equilibrium charge state on the island

 2N-1-fold ground state degeneracy due to Majorana
states (taking into account parity constraint) 
 Need N>1 for interesting effect! 



Parity constraint 
 Uniqueness of equilibrium charge state 

implies parity constraint

 Degeneracy of Majorana sector is 2N

 Parity constraint 
removes half the states  

 For now neglect MBS overlaps
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Leads: Dirac fermion description
1D (spinless) helical liquid description of leads 

(j=1...M)
 Pair of right/left movers for x>0, with boundary 

condition
 Low-energy Hamiltonian

 Unfolding 
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Abelian bosonization
Convenient description of topological Kondo effect   

(even without interactions in the leads)
Electron operator is represented by dual pair of boson fields

Boson commutator ensures anticommutators in given lead

Klein factors needed for anticommutators between 
different leads, represented by  η Majorana fermions 
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Lead Hamiltonian

Bosonization gives Gaussian theory 

e-e interactions in leads included „for free“ through 
interaction parameter                  (weakly repulsive 
case): spinless Luttinger liquid

Noninteracting leads:
Nota bene:
Dirichlet boundary conditions at x=0 for „charge“ fields θ
Neumann conditions for „phase“ fields Φ
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Klein-Majorana fusion
After gauge transformation: 

Fuse Klein-Majorana and ‚true‘ Majorana at each contact

→    all d fermion occupation numbers are conserved
(in absence of direct MBS couplings             )

& can be gauged away
Dramatic simplification compared to standard „Luttinger 
liquid Y junction“: purely bosonic problem!
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Integrating out the leads
Euclidean functional integral: integrate out all boson 
fields away from x=0

 Winding number
 Near Coulomb valley: effectively only W=0 contributes 
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Phase action
 Shift boson fields

 Phase field φ is thereby gauged away in tunneling term
 Gaussian action for φ remains

 Integration over φ can be done exactly...

2/ϕ−Φ→Φ jj
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Charging effects: dipole confinement
 High energy scales :  charging effects irrelevant
 Electron tunneling amplitudes renormalize independently 

upwards

 RG flow towards resonant Andreev reflection fixed point
 For :  charging induces ‚confinement‘
 In- and out-tunneling events are bound to ‚dipoles‘ with

coupling : entanglement of different leads
 Dipole coupling describes amplitude for cotunneling from 

lead j to lead k
 ‚Bare‘ value

large for small EC
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QCD analogy
Phase field mode q=0 is „free“ at energies < EC

 conjugate to pinned island charge,  fluctuates strongly
 enforces finite lifetime             of excited island states 

 In- and out-tunneling events separated by times of this order 
 Only virtual occupation of excited island states 

 Particles (‚quarks‘) = in-tunneling events 
 Antiparticles (‚antiquarks‘) = out-tunneling events

Particles and antiparticles bind together (dipoles or 
‚mesons‘) at low energies:  ‚confinement‘ 
but free at energies > EC:   ‚asymptotic freedom‘  

1~ −
CE



RG equations in dipole phase
 Energy scales below EC: effective phase action

 One-loop RG equations

suppression by Luttinger tunneling DoS
enhancement by dipole fusion processes

 RG-unstable intermediate fixed point with isotropic
couplings (for M>2)
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Fixed points

Two stable fixed points:          
Which one wins?  Depends on 

X<1:  flow toward insulating junction
with vanishing conductance matrix

X>1: isotropic flow to strong coupling       
exotic (non-Fermi liquid) Kondo regime

∞= ,0λ

0=λ

∞=λ

g
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Resonant Andreev reflection fixed point is always unstable 
because of charging energy !
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RG flow

 RG flow towards strong coupling for 
 Always happens for g=1 and/or moderate charging energy

 Flow towards isotropic couplings: anisotropies are RG 
irrelevant
 implies stability of Kondo fixed point

 Perturbative RG fails below
Kondo temperature 

*)1( λλ >

( )1* λλ−
≈ eET CK



Topological Kondo effect
Refermionize for g=1, use isotropic couplings

Majorana bilinears
 ‚Reality‘ condition: SO(M) symmetry [instead of SU(2)] 

 nonlocal realization of ‚quantum impurity spin‘
 Nonlocality ensures stability of Kondo fixed point

Majorana basis                                   for leads:      
SO2(M) Kondo model                
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Example: Minimal case M=3
allows for spin-1/2 representation of „quantum 
impurity spin“

 can be represented by standard Pauli matrices
 this spin is exchange coupled to effective spin-1 lead 

→  overscreened multi-channel Kondo effect 
Expected: Residual ground state degeneracy, local 
non-Fermi liquid character

lkjklj
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4

=

[ ] 321, iSSS =−



Towards strong coupling
On energy scales below Kondo temperature: 
phase fields are pinned near potential minima

 Isotropic (q=0) phase field mode is decoupled,             
λ affects only M-1 orthogonal modes

 Low-energy physics governed by instantons 
connecting nearest-neighbor minima

 Flow from Neumann to Dirichlet conditions
Quantum Brownian Motion in periodic potential 
(hyper-triangular lattice) for particle with coordinate 
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Dual boson theory
„Charge“ boson fields θ obey Neumann 
boundary conditions at strong coupling 
 Need components „perpendicular“ to isotropic q=0 

mode: constraint 
 Gaussian fixed-point action plus leading irrelevant 

perturbation from instanton transitions

scaling dimension
always irrelevant (y>1) for g>1/2  
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Transport properties near unitary limit
 Temperature and voltage < TK: 

Nonequilibrium Keldysh version of dual boson 
theory (include source fields)

 Linear conductance tensor

 Non-integer scaling dimension
implies non-Fermi liquid behavior even for g=1

 completely isotropic multi-terminal junction
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Correlated Andreev reflection
 Diagonal conductance at T=0 exceeds

resonant tunneling („teleportation“) value but 
stays below resonant Andreev reflection limit

 Interpretation: Correlated Andreev reflection
 Remove one lead: change of scaling

dimensions and conductance
 Non-Fermi liquid power-law corrections at 

finite T
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Fano factor
 Backscattering correction to current near unitary

limit for

 Shot noise:

 universal Fano factor, but different value than for
SU(N) Kondo effect

Sela et al. PRL 2006;  Mora et al., PRB 2009
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Summary Part IV 

Coulomb-Majorana device with more than 2 MBSs 
allow for  

„Topological Kondo effect“ 
with stable non-Fermi liquid behavior                              

Beri & Cooper, PRL 2012
Altland & Egger, PRL 2013

Zazunov, Altland & Egger, New J. Phys. 2014
Buccheri, Babujian, Korepin, Sodano & Trombettoni, Nucl. Phys. B 2015



Part V: Recent developments
 Probing the dynamics of the strongly entangled 

overscreened strong-coupling Kondo „impurity 
spin“ Altland, Beri, Egger & Tsvelik, PRL  2014

 Coupling the island in addition to another 
(grounded) superconductor:                      
manifold of non-Fermi liquid states

Eriksson, Mora, Zazunov & Egger, PRL 2014

 Networks of interacting Majorana fermions: 
Majorana surface code 

Xu & Fu, PRB 2010; Terhal, Hassler & Di Vincenzo, PRL 2012;                     
Vijay, Hsieh &  Fu, arXiv:1504.01724;  Plugge et al. (in preparation)



Majorana spin dynamics

 Overscreened multi-channel Kondo fixed point: 
massively entangled effective impurity degree
remains at strong coupling: „Majorana spin“

 Probe and manipulate by coupling of MBSs

 ‚Zeeman fields‘                   describe overlap of 
MBS wavefunctions within same nanowire

 Zeeman fields couple to 

Altland, Beri, Egger & Tsvelik, PRL 2014
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Majorana spin near strong coupling

Bosonized form of Majorana spin at Kondo 
fixed point:

 Dual boson fields describe ‚charge‘ (not ‚phase‘) 
in respective lead

 Scaling dimension →   RG relevant
 Zeeman field ultimately destroys Kondo fixed point & 

breaks emergent time reversal symmetry
 Perturbative treatment possible for
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Crossover SO(M)→SO(M-2)

 Lowering T below Th → crossover to another
Kondo model with SO(M-2) (Fermi liquid for M<5)
 Zeeman coupling h12 flows to strong coupling →               

disappear from low-energy sector
 Same scenario follows from Bethe ansatz solution

Altland, Beri, Egger & Tsvelik, JPA 2014

 Observable in conductance & in thermodynamic
properties

21,γγ



SO(M)→SO(M-2): conductance scaling
for single Zeeman component consider

(diagonal element of conductance tensor)

( )2,1≠jG jj012 ≠h



Multi-point correlations
 Majorana spin has nontrivial multi-point correlations at 

Kondo fixed point, e.g. for M=3 (absent for SU(N) case) 

 Observable consequences for time-dependent ‚Zeeman‘ 
field with
 Time-dependent gate voltage modulation of tunnel couplings
 Measurement of ‚magnetization‘  by known read-out methods
 Nonlinear frequency mixing
 Oscillatory transverse spin correlations (for B2=0)
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Adding Josephson coupling: Non Fermi 
liquid manifold

with another bulk superconductor: Topological 
Cooper pair box 
Effectively harmonic oscillator for
with Josephson plasma oscillation frequency 
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Eriksson, Mora, Zazunov & Egger, PRL 2014



Low energy theory

 Tracing over phase fluctuations gives two
coupling mechanisms:
 Resonant Andreev reflection processes

 Kondo exchange coupling, but of SO1(M) type 

 Interplay of resonant Andreev reflection and
Kondo screening for
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Quantum Brownian Motion picture
Abelian bosonization now yields (M=3)
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Quantum Brownian motion
 Leading irrelevant operator (LIO): tunneling

transitions connecting nearest neighbors
 Scaling dimension of LIO from n.n. distance d

 Pinned phase field configurations correspond to
Kondo fixed point, but unitarily rotated by resonant 
Andreev reflection corrections

 Stable non-Fermi liquid manifold as long as
LIO stays irrelevant, i.e. for

2

2

2π
dyLIO = Yi & Kane, PRB 1998

1>LIOy



Scaling dimension of LIO
 M-dimensional manifold of non-Fermi liquid 

states spanned by parameters
 Scaling dimension of LIO

 Stable manifold corresponds to y>1 
 For y<1: standard resonant Andreev reflection

scenario applies
 For y>1: non-Fermi liquid power laws appear in 

temperature dependence of conductance tensor
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Majorana surface code
 Recent interest on networks of interacting 

Majorana fermions
 perform topological (and universal) quantum 

computation ?
 Surface code architecture
 Encode logical qubit through many physical 

qubits, with topological protection
 Error detection via classical „software“
 Superconducting qubits: cumbersome and 

complicated, but at present most promising 
approach  Fowler, Mariantoni, Martinis & Clarke, PRA 86, 032324 (2012)



Paradigm: Kitaev toric code

2D toric code: exactly solvable spin-1/2 model 
on square lattice

 All star and plaquette operators commute and 
have eigenvalues ±1

 Ground state:

Kitaev & Laumann, arXiv:0904.2771
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Intrinsic topological order

 On surface of genus g: ground state has 
degeneracy 4g

 Quasiparticle spectrum: 
 „electric“ charges (flip star operator) and 

„magnetic“ vortices (flip plaquette operator)
 individually behave as bosons
 But: nontrivial mutual statistics
 Abelian anyons



Majorana surface code

Majorana plaquette model

e.g. for honeycomb lattice, but other lattices also work
All plaquette operators mutually commute, eigenvalues ±1
Ground state is gapped and follows from 

Xu & Fu, PRB 2010; Terhal et al. PRL 2012; 
Vijay, Hsieh & Fu, arXiv:1504.01724
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Z2 intrinsic topological order
 On torus (periodic boundary conditions in both 

directions): Fourfold GS degeneracy
 Indicates intrinsic topological order
 Proof: Count degrees of freedom and constraints
 2N/2-1 d.o.f.: for N MBS, we have 2N/2 dim Hilbert 

space with conserved total parity Г
 Constraints:

Each plaquette type (ABC) causes 2N/6-1 GS constraints
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Anyon excitations
 Elementary plaquette excitations (A,B,C) plus 

composite objects (AB, BC, AC, ABC)
 Elementary excitation (A,B,C) have bosonic 

self-statistics, but Berry phase π under 
exchange of different types

 ABC equals the corner-shared Majorana 
operator

 Plaquettes can be flipped only in pairs!



How to realize the Majorana plaquette 
model experimentally ?

 Our proposal: 
Use Coulomb-Majorana islands as in 
topological Kondo effect, but form network of 
such islands connected by tunneling contacts
 Lowest-order excitations yield plaquette 

Hamiltonian & realize Kitaev toric code 
 Read-out and manipulation of plaquettes by 

simple conductance measurements
see talk by S. Plugge @ Natal workshop

Plugge, Landau, Sela, Albrecht, Altland & Egger, 
in preparation 



Summary Part V

 Probing the dynamics of strongly entangled 
overscreened strong-coupling Kondo 
„impurity spin“       Altland, Beri, Egger & Tsvelik, PRL  2014

 Coupling the island to another (grounded) 
superconductor: Manifold of non-Fermi liquid 
states Eriksson, Mora, Zazunov & Egger, PRL 2014

 Networks of interacting Majorana fermions: 
Majorana surface code 



Summary of this course:
1. Majorana fermions and Majorana bound 

states (MBSs): Basics        
2. Kitaev chain: Basics and realization
3. Majorana takes charge     

Coupling Cooper pairs and Majorana fermions through 
Coulomb charging effects

4. Topological Kondo effect   
Stable overscreened multi-channel Kondo effect

5. Recent developments    
THANK YOU FOR YOUR ATTENTION!
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