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‘ Content of this course

1. Majorana fermions and Majorana bound
states (MBSs): Basics

> Kitaev chain & realization In nanowires

3. Majorana takes charge
Coupling Cooper pair and Majorana dynamics through
Coulomb charging energy

4. Topological Kondo effect
Overscreened multi-channel Kondo physics with interacting
MBSs

5. Recent developments




‘ Further reading

» J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

[many pictures used in my course are from here]

» M. Leljnse & K. Flensberg, Semicond. Sci. Technol. 27,
124003 (2012)

» C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4,
113 (2013)

» A. Zazunov, A. Altland & R. Egger, New J. Phys. 16,
015010 (2014)




Part I: Introduction to Majorana fermions

and MBSs

» What are Majorana fermions and Majorana
oound states (MBSs)?

» How are they described?

» How can they be realized?

» What properties do they have?
» Why should we care?




‘ What are Majorana fermions ?

~ Majorana fermion is its own antiparticle y =y"

carries no charge
real-valued solution of relativistic Dirac equation

» Elementary particle?

u > u
Perhaps neutrino ? S - d/p
Double beta decay: W e
For neutrino = antineutrino, 3 E‘J;,_.\J.-'xi”f" g - ©
annihilation possible... n.d - dip
u > u

Experiments remain unclear

~ Here: search for Majorana fermions as
emergent condensed matter quasiparticles




‘ Usual (Dirac) termions...

» Pauli principle: each single-particle state can
be only filled by zero or one electron

Eigenstates:  |0),|1)
~ Fermion operator in 2" quantization
c’l0)=1), c/0)=0 cc*+c'c=1
c'|1)=0, c1)=]0) ¢*=0

Operator ¢ annihilates particle (creates antiparticle)

Occupation number operator. N = C'C
N° =1 — only eigenvalues 0,1




‘ Majorana bound state (MBS)

» 1St quantization: HY = EY
- 2nd quantization: [H,c'| = Ec', [H,c] = —Ec
What about Majorana fermions? y =y~
[H ,7/] = E}/ — —EQ/ — E=0 (relative to chemical potential)
> MBS = equal-weight superposition of
electron and hole states, zero mode (E=0)

(unlike exciton = bosonic e-h product state)

— search in superconductors (SCs)

NB: For bosons, particle = antiparticle is standard situation (photons!)
For fermions, nontrivial statement !




‘ Counting Majorana state occupations

Consider set of MBSs at different locations
In space

» Self-adjoint operators  7; =7 j+

> Clifford algebra  y,7; + 77 = 25;

» Different Majorana operators anticommute just
like fermions
_ + 2 1
»But: YiVi=V; =
» annihilation of particle & antiparticle recovers previous
state
» QOccupation number of single MBS is ill-defined




So there i1s no Majorana sea (unlike Fermi sea) ...
or perhaps there is?
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‘ Counting Majorana fermions

Count state of spatially separated MBS pair:

Non-local auxiliary fermion ¢ =(y, +iy,)/2
n=c'c=(iyy,+1)/2=01 iyy,=2c"c-1
y,=C+C"

B ( +) MBS = ,half a fermion®,

Vo =—IE—C fractionalized zero mode

U(1) gauge freedom implies equally possible chQ;ce: _

c=e"(y,+iy,)/2

Entanglement ? [see talk by S. Plugge]

Semenoff & Sodano, Electron. J. Phys. (2006)
Plugge, Zazunov, Sodano & Egger, PRB (2015)




‘ MBS in p-wave superconductors

» Bogoliubov quasiparticles in s-wave BCS SC

=UuUcCl +VC, #v"
> At Fermi level: u=v 4 T l Y

» Far away from Fermi level:
eitheru—»1&v—-0 or v—-1l&u—0
[purely electron- or hole-like]

~ But spin spoills it: no MBS possible for s-wave SC!
» better: spinless quasiparticles in p-wave SC
» at Fermilevel: y = uc +uc= 7/+
~ Vortex in 2D p-wave SC hosts MBS
~ Experimentally most promising route (at present):
MBS end states of 1D p-wave SC (Kitaev chain)




Kitaev chain:
,,toy model“ for 1D p-wave SC

Tight-binding chain of spinless fermions

1 N1 y N
H = 5. (tcjcj+1+Ae cjcj+1+h.c.)—ychcj
J=1 J=1
~ Proximity-induced pairing gap A
> In 1D only fluctuating intrinsic SC — induce pairing by
proximity to bulk SC

~ Hopping amplitude t>0, chemical potential




‘ Majorana representation

Consider N lattice sites, open boundary conditions
~ To simplify algebra, first put A=t and p=0
~ Decompose lattice fermions into Majorana

fermions ¢, =e“¢’2(;/8,j +i7/A,j)/2 @
-~ short calculation gives o A e R e
t N-1 (b)
H:_l_Z7B,j7/AJ+1 9 9 @==0 @=:ce=Q
j=1 YAz TB2 YA3
~ MBSs at the ends don‘t appear! YL =7l
zero modes TR =V BN

o H] =lre H] =0




‘ Kitaev chain: Majorana end states

» Switch to new d fermions ,shifting register*

dj:(7/B,j_|7A,j+1)/2 - 1‘ -
~ H diagonalized

N -1
H=t> (djd;-1/2) +
j=1 —1yg i¥a=20;d;, -1=+41

(b)

@ @==0 @==0 @=mcee=0Q @
QAaa oy QA ey Qiimaap YA,N VBN

> Nonlocal fermionic zero mode
f =y +ira)/2
represents decoupled MBSs at ends, zero energy




‘ Topological degeneracy

» All d-fermion states unoccupied in ground
state (GS)

» Zero mode causes twofold GS degeneracy

N-1
s), =[0), {T/o),
N-1
Gs), -, {110), - 1l6s), - nJos),

Both GSs differ in fermion parity (even/odd)
Topological degeneracy




‘ Expectation values of local operators

» Arbitrary local operator A has locally

iIndistinguishable expectation values
(up to exponentially small corrections)

-(GS|AGS)_ = ,(GS|AGS),
> Proof:

- Local operator has finite support A~c/c;---CC;
~ Rewrite A in terms of d fermions (and possibly f)

A~did-dod(f, )

» fappears iff A has support near a boundary




‘ Nonlocal operators

» If A has no support near boundary:
same expectation values since |GS), =7,|GS).

2
7o =1
» Otherwise A has only support, say, near left
boundary A~y

Use again 7 =1 — same expectation values for
both GSs

— only nonlocal operators can distinguish
[or change — topological protection] the GSs

— Basis for topological quantum computation




‘ Kitaev chain: Arbitrary parameters

~ Topological phase persists for finite (not too
large) u and/or arbitrary A/t (see later)

~ MBS wavefunction: Exponential decay into bulk
on lengthscale ¢

~ Chain length L determines overlap between
left/right MBS wavefunctions

—» MBS hybridization & ~€ -

Then: exponentially small but finite-energy mode
Instead of true zero mode

H=le.y v, :gf(2f+f —1)—) te.

5




Fractional Josephson etfect

~ Topological degeneracy crucial ingredient for
hallmark experiment of MBS physics:
fractional Josephson effect

~ First: brief reminder of standard Josephson
effect in conventional s-wave BCS
superconductors




'Reminder: Josephson etfect

P/2 -/2
» Tunnel contact (tunneling amplitude A)
separates s-wave SCs, phase difference ¢

» Tunneling of Cooper pairs (2e) gives 21
periodic Josephson energy
E..(p)=-E, cosp with E, ~ 1

» Josephson DC supercurrent-phase relation
)= 2e dE
h

(@ s — | sing with |~




Now topological case

» Two tunnel-coupled Kitaev chains (A=t, u=0)
~ Boundary fermions connected by tunneling
H, . =A4c/c; +hc.
~ Insert effective low-energy form

¢, =2y, +iy, )12 > ey 12

Co =€ (g q +iy e )2 > ie My, 12

I .

VL=EVsL TrRETVaAR




‘ Projection to low-energy space

» Low energy space is spanned by MBSs —

A Q) .
Htun :ECOS(EJ YW S

~ Andreev bound states (inside gap!)

E.(p)= J_ricos(ﬂj
> Fractional Josephson effect: 2 2
()= ¢k, _ i%sinﬁﬂj
h de 2h

~ tunneling of ,half a Cooper pair”
— 417 periodic Josephson current-phase relation

ly yg =11




Fractional Josephson etfect

>

Josephson effect via single-electron tunneling
through zero mode

~ Highly unusual: supercurrent proportional to A

Two branches for different GS parity

~ Hamiltonian has 21T periodicity

~ GS recovered only by advancing phase by 41

~ Parity conservation crucial for 41t periodicity

> Quasiparticle poisoning:
boson-mediated transitions from Andreev-MBS sector
to above-gap quasiparticles — flip parity

211 periodicity restored at finite T (in stationary case)




‘ Nonlocality and degeneracy

Spatially separate
Majorana pair yields
E=0 fermion mode ,

~ Information stored non- -
locally & topologically ©:
protected

Ground state |G) is
degenerate
~ Even/odd number of
electrons (fermion
parity): same E=0
~ Rotation in ground-  ~.|(>\ = |(&/ 2y
state manifold: UG =G K




‘ Nonab elian A1NIYOI11S [see lectures by Ady Stern]

Example: four MBS = two parity qubits
~ Start with initial state |G)=|0,,,0,, )

» Braiding: rotation in ground-state manifold by
Interchanging 7, and 73

1
U23‘G>:—(1+7/37/2)‘G> 14
\/E Ilvanov, PRL 2001 ‘2 ‘7/3
entangled state, 7, ®

nonabelian exchange statistics
...could be useful for quantum computing ... Vi @




‘ Summary of Part I

~ Basic features of Majorana ,,fermions”
Fractionalized zero mode ,particles*
Counting MBS pairs via nonlocal fermions
Topological degeneracy, ground-state parity

~ Realizable as end states of 1D p-wave SC.:
Kitaev chain

» Slignhatures: fractional Josephson effect,
nonabelian exchange statistics, ...




Part II: Kitaev chain

1. Bulk 1D p-wave superconductor (SC)

N-1 N

H = —%Z(tc.*c. +Aec.c.., + h.c.)— 1Y CiC,
j=1

] 7+ ] 7]+l
j=1

Majorana end states reflect bulk topology:
bulk-boundary correspondence
Sensitivity of ground state to boundary conditions
Bulk topological index

2. Kitaev chain can be realized in lab

Semiconductor nanowires with strong spin-orbit
coupling, Zeeman field, proximity coupled to
conventional s-wave SC




‘ Bulk topology

MBSs mirror bulk topological features —

consider ring: periodic BCs (arbitrary parameters)
A, e™C
-z E N NP
keBZ Ak _ék ~
‘—'—’ C, = (fi j Nambu spinor
H ggc C_y

[ 1/2 : no double counting! ] _

A, =—iAe"sink =-A
E =—tcosk —u < B
o Fourier transformed

Kinetic energy p-wave pairing potential




BAG equation

Diagonalize Hamiltonian  H = ' E,a/a,
keBZ

Quasiparticle operators &, =U,C, +V,C,
Bogoliubov-deGennes (BdG) equation

[*’:k - Ek A*k J[ukj _
A, _fk -E
E,+S&,
solved by Y = A, \\/
:\/é:l<2+‘Ak‘2 V, = E,

Ak




‘ Phase diagram ot Kitaev chain

Topological phase transitions require gap
closing E =0 > A =& =0
two solutions: k=0 with g=-t
k=+7 with =t
- |u|>t: topologically trivial ,strong pairing“ phase,
adiabatically connected to vacuum
u<—t and u >t phases related by e-h symmetry

~ Topologically nontrivial ,weak pairing“ regime
(with MBSs under open BCs) contains y=0 —
corresponds to || <t




‘ Topological superconductor

~ BdG Hamiltonian: Hgy =B(k)-7
Nambu ,spin® in ,magnetic field*
particle-hole symmetry requires: B, (k)=-B, (-k)
k)=

B, (k)=B,(-k)
— field needed only for 0<k <=7
» Within a gapped phase: study map from BZ

to unit Sphere K — B = é(k)/‘é(k)(
values at k=0 and k=11 restricted by
B(0)=s,2
B(r)=s_2

T

note that Ay, =0
SO,JZ' = Sgn( k=0,72'): +1




‘ Z, topological invariant

Follow field direction from k=0 to k=11

Either field stays near same pole (top. trivial)

or explores whole sphere (top. nontrivial)

Z, Invariant
V=55, =sgn(&¢;,)

(a)

non-topological
(strong pairing)

A tcosk

topological
(weak pairing)
non-topological
(strong pairing}

b)

{trivial)




‘ Ground state: elementary dertvation
(for u=-t)

T+ N AN ~+ N *R+R Tt
H =& oCoCip + Z(fk (Ck C T+ C—kC—k)+ [Akck Ct h-C-] )

k>0
(k,-K) pairs decouple

note A,_, =0 .
. use basis states |n,,n_)

Solve for each k (decoupled even/odd parity sector)

0 A _ y 2
Hk,even — (A*k 2; ] basis |OO>’|11> Eke,in — gk T \/é:kz T ‘Ak‘

k

0 | 0
 odd :[% : j basis |01),|10) Ekdd =&
k

Lowest energy has even parity — GS> ~ H(Uk‘00> —I—Vk‘11>)

k>0




‘ Sensitivity to boundary conditions

k=0 unpaired fermion mode at &,_,=-t—u
» M > -1: Mode occupied — odd parity GS

~ Antiperiodic boundary conditions:
no k=0 mode exists, even parity GS

Sensitivity to boundary conditions indicates
topologically nontrivial phase

No such sensitivity for py < -t

~ Then always even parity GS:
topologically trivial phase




Interpolate between boundary conditions

Consider t—A for one link of a Kitaev ring in
topological phase:
~ A= -t antiperiodic BC
» AN=0:open BC
~ A=+ 1. periodic BC
» Changing A from —t to +t, one must go
through degenerate GS (with opposite
fermion parity)
~ otherwise GS nondegenerate with finite gap




‘ Long—wavelength continuum limit

> BdG Hamiltonian for small k:
—t—u 2IkA
HBdG — :
2IKA  t+ u

NB. dropping k? terms is controlled approximation

» Construction of MBS: Consider spatially
varying chemical potential z(x)=—t+ ax

o —ax  2A0,) r 9 DA
PG —2A0, oX CTOXTePAL,

p=-I10

X




‘ Squaring trick

» To obtain spectrum, square BdG Hamiltonian
HZ2 . =a’x? +4N°p® + 2aA(xp — pxN—iz, )
=a’X* +4A° p° +2aAT,

Choose Nambu basis: 7, — %1

1D harmonic oscillator: i—>4A2, 17 o2
Frequency: @ =4Aq  2M 2

~ Elgenenergies (n=0,1,2,...)
EZ, =ha(n+1/2+1/2)




‘ Majorana bound state

» Zero energy solution E,_=0 ¢ (X) =(383j
» Localized around transition point x=0:

u,v~e ' 1 =./n/mo =+28A1c

» BdG states: particle-hole symmetry encoded
in |r,,Hge] =0. Thisimplies ¢ = d.c =74
~ Majorana state at E=0 has U =V

Explicit construction of MBS operator:  ©; — ¥ (x)

y = jdx[u(x)‘{l(x)+ u()*(x)| =5




How to realize Kitaev chain in the lab?

» 1D spinless fermions: use half-metal or large
Zeeman splitting?
~ but proximity effect from s-wave SCs then difficult

» Better: admixture of effective s- and p-wave
pairing in 1D nanowires with

~ Strong (Rashba) spin-orbit coupling: InAs, InSb

~ Magnetic Zeeman field
» exploit large Landé factor for InAs, InSb
» Orientation not crucial (but not along spin-orbit axis)

~ Proximity effect from close-by conventional
s-wave SC: Nb, NDbTIN, ...




'Rashba quantum wire (InAs, InSb)
E

2 1
Hy= <% +a(Exp,) 0+ =gupB-o ©B
2m 2

s-wave superconductor £
B =0 B+0
2 2
0 0 K )/ /J/
) 0 2 -2 0 2
Pz Px

Oreg, Refael & von Oppen, PRL 2010
Lutchyn, Sau & Das Sarma, PRL 2010




1D helical liquid and proximity effect

» Without proximity coupling: 1D helical liquid
» Spin of fermion is enslaved by momentum direction
» Opposite momenta have (approximately) opposite spin

» Now: include coupling to s-wave superconductor
» Gap closes and reopens at p=0: B>A topological phase

A =10 A =0.5B A =B A=1.58
> \/ 2\/ 2\/ ) \/
N CEN o—= > o

ST FTECEFSCTTNN SCTTEIIREIITON JoT==ZIEIo

S s e // S /, ~..\
-2 /// \\\ -2 {// \‘\ -2 {/ \\\ -2 ’/ \\\
// , A ,/ \\ // \ // \




‘ BdG Hamiltonian v,

H =Idx\P+(x)H sas P (%) ¥= v

» Four-spinor combines spin and Nambu space
~ Necessary because of spin-orbit coupling
~Caution: avoid double counting! 0 —1
- ,-*sign highlights time-reversal symmetry T=-10,C =(1 0 jC

2
P
Hoio= — U |+Upo, 7,—Bo, +Ar,
2m I I
Rashba field, not aligned J
with Zeeman field Zeeman field  Proximity

induced
pairing




‘ Dispersion

~ B=A=0: Shifted parabolas E,=¢,up

. A=0: gap opens near p=0 E, =&, +4/u’p?+B’
Pair of (almost) helical states for y in ,gap“ at p=0
Now: p=0 and strong spin-orbit B << mu?

» Gap closing and reopening near p=0

described by Hgy =Upo,r, —Bo, + Az,
Squaring trick
H2 . =U’p°+B°+A° —2BAo, 7,

SR
=+1




‘ Dispersion near p=0

» Gap closing at B=A signals topological phase

transition
E2, =u?p*+(BxA)

» B>A corresponds to topological phase of
Kitaev chain: Majorana end states

- For finite g B, =+/A? + 4

~ One can tune Zeeman field or chemical potential
to reach topological regime !




How to detect Majorana states?

1. Fractional Josephson effect (but requires
study of dynamics...)

2. Zero bias anomaly In tunneling
conductance (or related features)

3. Nonlocal effects in interacting devices, e.g.
topological Kondo physics




' Zero bias anomaly (ZBA)

Tunneling into Majorana state from a normal lead

v = /da: fr(x) (\IJTy () + \Iﬂy(:ﬁ)) Spin up alongy

Yo = /diU fr(x) (\Piy (x) + \PL (CC)) Spin down along y




' ZBA conductance peak

Tunneling Hamiltonian

Hy = Z (Ul,kcmy - UT,!«CLTTJ) 71
k

Transport signature of Majoranas:
Zero-bias conductance peak due to resonant

Andreev reflection Bolech & Demler, PRL 2007
292 1 Law, Lee & Ng, PRL 2009
Flensberg, PRB 2010

G (V ) —

h 1+(eV/T)




‘ Experimental Majorana signatures

Mourik et al., Science 2012
InAs or InSb nanowires expected to e s
host Majoranas due to interplay of
« strong Rashba spin orbit field
* magnetic Zeeman field
e proximity-induced pairing
Oreg, Refael & von Oppen, PRL 2010
Lutchyn, Sau & Das Sarma, PRL 2010

D
Transport signature of Majoranas: ol 2
Zero-bias conductance peak due g
to resonant Andreev reflection S vy
Bolech & Demler, PRL 2007 ° B=0

o

Law, Lee & Ng, PRL 2009 o,
Flensberg, PRB 2010
see also: Rokhinson et al., Nat. Phys. 2012; Deng et al.,
Nano Lett. 2012; Das et al., Nat. Phys. 2012; Churchill et
al., PRB 2013; Nadj-Perge et al., Science 2014




Zero-bias conductance peak

Mourik et al., Science 2012
A 0.5

(2e%/h)

di/av (2e?/n)

-400 -200 0 200 400 -0.25 0 0.25 05 0.75
V (uV) B

Possible explanations:

~ Majorana state (most likely)

~ Disorder-induced peak Bagrets & Altland, PRL 2012
~  Smooth confinement Kells, Meidan & Brouwer, PRB 2012
~ Kondo effect Lee et al., PRL 2012




‘ Conclusions Part 11

» Bulk-boundary correspondence: Kitaev chain

Bulk topological phase: Z, topological invariant,
sensitivity to boundary conditions

» Realization of Kitaev chain in semiconductor
nanowires with
strong spin-orbit coupling
sufficiently (but not too) strong magnetic Zeeman
field

and proximity-induced superconductivity

» Experimental signature: Zero-bias anomaly In
tunneling conductance
resonant Andreev reflection




‘ Part I1I: Majorana takes charge

» So far (effectively) noninteracting problem

» Effect of e-e interaction on Majorana fermions

~ Interactions couple Majorana and Cooper pair
dynamics

~ Consider charging energy in floating (not
grounded) device hosting MBSs

~ Results in novel nonlocal effects
» Simplest case: Majorana single-charge

tranS|StOr Fu, PRL 2010;: Hutzen, Zazunov, Braunecker,
Levy Yeyati & Egger, PRL 2012




‘ Transport beyond ZBA

» Coulomb interactions: floating device
> Simplest: Majorana single-charge transistor

~ Overhanging helical wire parts:
normal leads tunnel-coupled to MBSs ‘3—4 .
~ Nanowire part in proximity to Vv -
superconductor hosts two MBSs g
~ Include charging energy of floating

Majorana island ® ®

¥ R
~ Low energy: no quasiparticles T

~ For now assume no MBS overlap




Charging energy

Two zero modes:

1. Majorana bound states f=(r +ire)/2
217 f -1=iy,y,==1

2. Cooper pair number & conjugate _
superconductor phase IN_, o] =i

Higg = Ec(@N,+f7f —n_f

island

(gate parameter n,)

Majorana fermions couple to Cooper pairs
through the charging energy




‘ Absence of even-odd effect

> Without MBSs: Even-odd effect

> With MBSs: no even-odd effect!

~ Tuning wire parameters into the topological phase
removes even-odd effect

()

E

A 2N-3  2N-1  2N+1 N\.\c\_/./
IA

2N-4  2N-2 2N 2N+2 \'\/'/'

(b)
ON-3  2N-1 ON+1 \‘\\,./‘/{

oN-4  2N-2 2N oN+2 =T

Fu, PRL 2010




‘ Leads & Tunneling Hamiltonian

Lo ¥
» Normal lead tunnel-coupled to MBS
~ Can be described as spinless helical wire
» Applied bias voltage = chemical potential difference
» Electron tunneling from lead to island
~ Low energies: tunneling only proceeds via MBS
~ Project electron operator in TS to Majorana sector

~ MBS spin structure contained in tunneling
amplitude

!\"!
] L




‘ Tunneling Hamiltonian

Source (drain) couples to left (right) MBS only.

First gUGSSZ But: charge conserved
H, = thC}Lj/j + h.c. in floating device!
j=L,R

- Hybridizations between leads and island: T} ~ |t
» Linewidth of zero mode: I =I| +I;

Re-express using f fermion &
take charge conservation into account:

H, = tci(f+e ™ f*)—iteci(f —e ™ f*)+he

1

Cooper pair splitting operator

‘ 2




‘ Gauge choice

Using different gauge
f=e72(y, +iys)/2

Instead gives
—ipl/2

H, = t,cie 7; +h.c.
R

J=L,

Majorana mode appears charge neutral in this gauge




Majorana Meir-Wingreen formula

» Exact expression for interacting case
el re
g =] dE F(E-u, )ImG™(E)

~ Lead Fermi distribution encoded In F(E)=tanh(%T)

~  Computation of retarded Majorana Green's function
required

~ Differential conductance: G =dl/dv

| :(IL_IR)/Z




NOﬁlﬁtefaCtlﬁg Casc. Bolech & Demler, PRL 2007

. Law, Lee & Ng, PRL 2009
Resonant Andreev reflection

~ E-=0: Majorana spectral function
- |meet(E)_
_|_

F
> T=0 nonlinear differential conductance:

1
G —_
V)= h 1+(eV /)
~ Currents I, and I, fluctuate independently,
superconductor effectively grounded

~ Decoupling of currents for all cumulants (FCS) In
noninteracting case: Currents flow to ground




Strong blockade: Electron teleportation

_ Fu, PRL 2010
~ Peak conductance for hali-integer n,

» Strong charging energy then allows only two
degenerate charge configurations

» Model maps to spinless
model

-~ Linear conductance (T=0): G =e?/h

Halving of peak conductance compared to non-
Interacting case

~ Interpretation: Electron teleportation due to
nonlocality of fermion zero mode f




Crossover from resonant Andreev
retlection to electron teleportation

» Semiclassical approach to phase dynamics
Zazunov, Levy Yeyati & Egger, PRB 2011

~ Practically useful in weak Coulomb blockade regime:
Interaction corrections to conductance

» Full crossover from three other methods:
Hutzen, Zazunov, Braunecker, Levy Yeyati & Egger, PRL 2012

~ Master equation for T>I: include sequential and all
cotunneling processes (incl. local and crossed
Andreev reflection)

~ Equation of motion approach for peak conductance
~ Zero bandwidth model for leads: exact solution




‘ Weak Coulomb blockade regime

» Phase fluctuations are small & allow for
semiclassical expansion
~ no dependence on gate parameter yet

» Results in Langevin equation for phase

dynamics . .
G+Qp=&(t)
- Inverse RC time of effective circuit: €2 = 17E
- Dimensionless damping strength _gz I
e T

(higher energy scales: damping retardation!)
~ Gaussian random force <§(t)§(t’)> — 4E2K (t—t)




How to obtain the current...

K has lengthy expression...
~ In equilibrium satisfies fluctuation dissipation

theorem
Keq (C()) T ECOth[ T jneq (C())
» Current: |, =T, j dr G™ (T)Sm(yJ )F (r)e )
1 T~
Jt—t)= E<[g3(t)_ 5(’[’)]2>§ >0 noninteracting MBS GF

solution @(t) for given noise realization

~ Some algebra: 1—coswr
J(r)—

*(L+ w1 Q?)




‘ Nonlinear conductance

po=—Hg =€V /2

~ Symmetric system @ T=0 [ =T, =I/2

~ Observable: 1 (V)

OM) = 7n

~ Noninteracting case (resonant Andreev reflection):

I eV
@OV )=—rtan"—<1
g (V)= tan™—

~ Analytical result for T'< E. : universal power law
suppression of linear conductance with increasing

charging energy g(O)zO.96(E%)1/8




Linear conductance: nhumerics

interaction induced suppression

0.7 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1




‘ Nonlinear conductance

e ——

— B T-0.157
..... - E /T=1.57

— -,
~

0.8- T~ N |----- E =0
] .
<
0.6
0.4 T
I ! I
0 1 2




‘ Strong Coulomb blockade

» Strong Coulomb effects are beyond
semiclassical expansion

Winding numbers: dependence on gate parameter

» For T, eV > 1T : master equation approach

Stationary probabilities for Q =2N_ +n;
particles on island obey master equation

QZQ[W Q- Q)P(Q)-W(Q - Q)P(Q)]=0

Rates include sequential tunneling, cotunneling,
and Andreev reflection processes from systematic
expansion in [




‘ Rates entering master equation

~ Sequential tunneling processes: Golden rule

W(Q—-Q+1)= YT, f(Equ —Eo F 4, )
j=L,R I

2
Fermi function  Eq =E¢ (Q—ng)

~ Elastic Cotunneling: transfer of electron from left to
rlght lead by ,tunneling” through island with given Q

>

>

Intermediate virtual excitation of island
EC rates don‘t enter master equation but show up in current

Usually EC strongly suppressed by quasiparticle gap, but
Majorana modes yield important EC contributions to
conductance !




| Andreev reflection (AR) rates

W(Q —>Q£2)=WI3%+ D W

j=L,R

Q—>0Q=x2
j,LAR

» Local AR: Electron and hole from same lead combine to form

Cooper pair (or reverse process)

» Crossed AR: Electron and hole are from different leads

~ Example: CAR rate

(regularization by principal-value integration necessary)

WS =2 [dE B (E - )1 (B O(E + E~(Equ -~ Eo )

1 N 1
E - (EQ+1 - EQ) EI_(EQH - EQ)

2




Coulomb oscillations

0.20 T T T T T T T T T T T T - T o
E=-0 H
c
...... E =T
- C ]
—__Ec=21“
g gg [rrrrrr e .—.— E,=3T |,
) ——‘Ec=41_‘
____________ EC=6F i
= ! E = 10T ]
— - - =, —_ |===E =16TH
‘\.’ /—
) \\ \ \\s__// 7 /1 N\ \\_’// Y
_\ ., 7 I \ \ ’/ I_
NN ) I ;1
\ . / / \ \ - I
0.05 \ \, o / \ T K | —
\ T~ / \ DR /
\ / \ /
TN / \ /]
\ / \ /
~ 7 ~ /
O 1 1 ™ o o = 1 1 | 1 1 i S U ] 1 1
2.5 3 3.5 4 4.5




‘ Valley conductance

~ Analytical result for valley lineshape in strong
Coulomb blockade limit E. >>T,I"

eI 1
G(5)=— LR
5) h EZ (1-457

~ Small deviation from valley center. o=n, —[ng]
~ Dominated by Elastic Cotunneling

~ Andreev reflection processes are strongly
suppressed by Coulomb effects




‘ Finite T conductance peak

Master equation for strong charging:
sequential tunneling yields peak lineshape
e’ 1
G(5)=
2 h 16T cosh?(s E¢ /T)

Noninteracting peak value twice larger
» Strong thermal suppression of peak

» In addition interaction-induced suppression

Halved peak conductance in strong charging limit
also for finite T




Peak conductance at T=0: from resonant
Andreev retlection to teleportation
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Finite bias stdepeaks

0.16

| Master equation

T=2I




Finite bias stdepeaks

~ On resonance: sidepeaks at eV =4nE,

4, resonant with two (almost) degenerate
higher order charge states: additional sequential
tunneling contributions

Requires change of Cooper pair number — only
possible due to MBSs:

» Similar sidepeaks away from resonance

» Peak location depends in characteristic way
on magnetic field




‘ Summary Part I11

» Coulomb charging effects couple Cooper pair
dynamics to Majorana fermions

» Simplest case: Majorana single-charge

transistor (two MBSS)

» Teleportation vs resonant Andreev reflection
Nonlocality determines transport for strong
charging energy
Crossover between teleportation and resonant
Andreev reflection




Part IV: Topological Kondo etfect

» For more than two MBSs on a floating SC.:
J2gquantum impurity spin“ nonlocally encoded by
MBSSs

» Couple ,spin“ to normal leads: Cotunneling
causes ,exchange coupling*

> Stable non-Fermi liquid (multi-channel type)
Kondo effect

> observable In electric conductance

measurements Beri & Cooper, PRL 2012
Altland & Egger, PRL 2013; Beri, PRL 2013

Altland, Beri, Egger & Tsvelik, PRL 2014

Zazunov, Altland & Egger, New J. Phys. 2014

Eriksson, Mora, Zazunov & Egger, PRL 2014

Buccheri, Babuijan, Korepin, Sodano & Trombettoni, Nucl. Phys. B 2015




‘ Quantum impurity ,,spin® with MBSs

—/

» Now N>1 helical wires: M Majorana states tunnel-
coupled to helical Luttinger liquid wires with g<1

» Strong charging energy, with nearly integer ng:
unique equilibrium charge state on the island

» 2N-1-fold ground state degeneracy due to Majorana
states (taking into account parity constraint)
» Need N>1 for interesting effect!




Parity constraint

» Unigueness of equilibrium charge state
Implies parity constraint
N

f = +1 /2
Q=2NC+Zfa+fa _ cst o (7/2a—1 72a)
a=1

f f —01

Degeneracy of Majorana sector is 2N
. . 2N

Parity constraint N H y; ==+1

removes half the states '™

» For now neglect MBS overlaps ~iy;»




‘ Leads: Dirac fermion description

1D (spinless) helical liquid description of leads
(j=1...M)

~ Pair of right/left movers for x>0, with boundary
condition v, (0)=y (0

~ Low-energy Hamiltonian ve =1
M o0
Higaas = _iZjdX (l//;r,Raij,R _W;Laij,L)_l_ ee terms
1=l 0

~ Unfolding WL(X) =Yg (_ X)

M (0 @)
H .. = —iZ;Lodx w0,y +eeterms
j=




‘ Abelian bosonization

Convenient description of topological Kondo effect
(even without interactions in the leads)
Electron operator is represented by dual pair of boson fields

[¢j (x), Qj.(x')] = %51.]. sgn(x —x')

Boson commutator ensures anticommutators in given lead

i[¢j(X)i9j(X)] nin +mmn; = 25jk
N7« T 70 = 0

Klein factors needed for anticommutators between
different leads, represented by n Majorana fermions

W ri(X)~ 178




‘ IL.ead Hamiltonian

Bosonization gives Gaussian theory

H leads — ;%J‘: dX (g (ax¢j )2 + g_l(gxej )2)

e-e Interactions in leads included ,for free” through
Interaction parameter 1/2<g<1 (weakly repulsive
case): spinless Luttinger liquid

Noninteracting leads: =1
Nota bene:

Dirichlet boundary conditions at x=0 for ,charge” fields 6
Neumann conditions for ,phase” fields ®




‘ Klein-Majorana tusion

After gauge transformation: tw(0)e™”?y. +hec.
fa N e—l(p/Z fa _1ZI\/I IR ( )

— =Zt,-(i77,-7,-) Si”(¢j(0)+¢’/2)

Fuse Klein-Majorana and ,true‘ Majorana at each contact
d, =7, +iy, )12 drd, =(1+in,y,)/2 =01
— all d fermion occupation numbers are conserved
(in absence of direct MBS couplings ~ 17;7«)
& can be gauged away

Dramatic simplification compared to standard ,Luttinger
liquid Y junction®:.  purely bosonic problem!




‘ Integrating out the leads

Euclidean functional integral: integrate out all boson

fields away from x=0 O =¢ (x _ 0)
2 Wn El Idr ¢* -S
Z=Ye""[Dpe®  [Dde
W =—o0
Tg 5 1/T
S :EZ‘O)H@J((‘)){ +th Idr Sln(CI)j +g0/2)
" J ° w=2mT
Ohmic dissipation, Tunneling from leads to
e-h pair excitations in leads Majorana island

- Winding number @(z+1/T)=42W + ¢(7)
> Near Coulomb valley: effectively only W=0 contributes




‘ Phase action

~ Shift boson fields @, > @, -¢/2
» Phase field ¢ is thereby gauged away in tunneling term

~ Gaussian action for ¢ remains
» Integration over ¢ can be done exactly...

_To N (TSR -
S_EZ; 2gME, ‘CDq(a))( +jZ_;tJIdTS'nq)j(T)

q,0

~ 1 270/ M

O =—> ™V,
q NZ,: j

Charging energy affects only

isotropic phase field (g=0), which / = j DD e

becomes ,free” at low energies




‘ Charging etfects: dipole confinement

» High energy scales > E.: charging effects irrelevant
» Electron tunneling amplitudes renormalize independently

upwards tj(E)~ E—1+%g

» RG flow towards resonant Andreev reflection fixed point

» For E < E.. charging induces ,confinement'

» In- and out-tunneling events are bound to ,dipoles’ with
coupling /’tjik . entanglement of different leads

» Dipole coupling describes amplitude for cotunneling from
lead | to lead k

> Bare* value t;(Ec) t(Ec) E;3+%

(1) _ ]

c large for small E.




‘ QCD analogy

Phase field mode g=0 is ,free” at energies < E.

conjugate to pinned island charge, fluctuates strongly

enforces finite lifetime ~ EZ* of excited island states

> In- and out-tunneling events separated by times of this order
» Only virtual occupation of excited island states

Particles (,quarks‘) = in-tunneling events
Antiparticles (,antiquarks') = out-tunneling events

Particles and antiparticles bind together (dipoles or
,mesons’) at low energies: ,confinement’

but free at energies > E.: ,asymptotic freedom’




MR(}equadonsinchpokzphaya
> Energy scales below E.: effective phase action
Zj |a)”CI> (a)){ —é/ljkjdrcos(d)j ~®,)
> One-loop RG equations | /Lead DoS
O — (gt - +v Y A4

dl 1 me( ] k) I

suppression by Luttinger tunneling DoS
enhancement by dipole fusion processes

» RG-unstable intermediate fixed pomt1 with isotropic
couplings (for M>2)  , _ »_9 —1
N VIS




Fixed points

Two stable fixed points: A =0,
Which one wins? Depends on X =A®/1 ~ E_*/9

X<1: flow toward insulating junction A =0
with vanishing conductance matrix G, ~T 2?9 0

X>1: isotropic flow to strong coupling A =0
exotic (non-Fermi liquid) Kondo regime

Resonant Andreev reflection fixed point is always unstable
because of charging energy !




‘ RG flow

- RG flow towards strong coupling for (A?) > A"
» Always happens for g=1 and/or moderate charging energy

~ Flow towards isotropic couplings: anisotropies are RG
Irrelevant
> Implies stability of Kondo fixed point

~ Perturbative RG fails below A
Kondo temperature T, ~E.e A




‘ Topological Kondo effect

Refermionize for g=1, use isotropic couplings
0 0] M . n
H = _ij_gXZW;ngj +14 Z}(l//j (O)Sjka (O)
j=1 s

Majorana bilinears Sy =1y,
» ,Reality’ condition: SO(M) symmetry [instead of SU(2)]
» nonlocal realization of ,guantum impurity spin’
» Nonlocality ensures stability of Kondo fixed point
Majorana basis w(x)= u(x)+i&(x) for leads:
SO,(M) Kondo model

H = —i | dxu' 0,40 +i4u" (0)5(0)+ [ <> &]




‘ Example: Minimal case M=3

allows for spin-1/2 representation of ,quantum

impurity spin” S, _ 1!

45jk|7/k7/|

[Sl’ Sz]_ — iSs
» can be represented by standard Pauli matrices

» this spin is exchange coupled to effective spin-1 lead
— overscreened multi-channel Kondo effect

Expected: Residual ground state degeneracy, local
non-Fermi liquid character




‘ Towards strong coupling

On energy scales below Kondo temperature:
phase fields are pinned near potential minima

S_znZI o] (e ){—z%jdrcos(cbj—cbk)

~ Isotropic (g=0) phase field mode is decoupled,
A affects only M-1 orthogonal modes

~ Low-energy physics governed by instantons
connecting nearest-neighbor minima

» Flow from Neumann to Dirichlet conditions

Quantum Brownian Motion In periodic potential
(hyper-triangular lattice) for particle with coordinate ®




'Dual boson theory

,Charge“ boson fields 8 obey Neumann
boundary conditions at strong coupling

~ Need components ,perpendicular” to isotropic =0
mode: constraint ), ©;=0

> Gaussian fixed-point action plus leading irrelevant
perturbation from instanton transitions

S——Zj \a)H@) ‘ WZjdrcos(ZG)j)
M -1

scaling dimension y= 29T
always irrelevant (y>1) for g>1/2




‘ Transport properties near unitary limit

» Temperature and voltage < T:

Nonequilibrium Keldysh version of dual boson
theory (include source fields)

> Linear conductance tensor

owmegu = [0 o

. . . . 1
~ Non-integer scallng dimension Y= 29(1—Vj >1
Implies non-Fermi liguid behavior even for g=1
~ completely isotropic multi-terminal junction




‘ Correlated Andreev reflection

» Diagonal conductance at T=0 exceeds
resonant tunneling (,teleportation®) value but
stays below resonant Andreev reflection limit

2
ij 2¢° (1—ij — e—<G <Zi
h M N h

~ Interpretation: Correlated Andreev reflection

» Remove one lead: change of scaling
dimensions and conductance

» Non-Fermi liguid power-law corrections at
finite T




‘ Fano factor

Zazunov et al., NJP 2014

» Backscattering correction to current near unitary

limit for > «;=0 o 2y-2
> G
- Shot noise: 5, (v 0)= [dt e“((1,(t)1,(0))(1,)1,))

2y-—2
~ 2ge° 1 1\ u
ST 2 (5"'__1\/1)(5“_1\/!%;

|ﬂ.|
> universal Fano factor, but different value than for
SU(N) Kondo effect

'S
-rK

Sela et al. PRL 2006; Mora et al., PRB 2009




‘ Summary Part IV

Coulomb-Majorana device with more than 2 MBSs
allow for

,Topological Kondo effect"
with stable non-Fermi liquid behavior

Beri & Cooper, PRL 2012

Altland & Egger, PRL 2013
Zazunov, Altland & Egger, New J. Phys. 2014
Buccheri, Babujian, Korepin, Sodano & Trombettoni, Nucl. Phys. B 2015




‘ Part V: Recent developments

» Probing the dynamics of the strongly entangled
overscreened strong-coupling Kondo ,impurity
spin® Altland, Beri, Egger & Tsvelik, PRL 2014

» Coupling the island in addition to another
(grounded) superconductor:
manifold of non-Fermi liquid states
Eriksson, Mora, Zazunov & Egger, PRL 2014

» Networks of interacting Majorana fermions:

Majorana surface code

Xu & Fu, PRB 2010; Terhal, Hassler & Di Vincenzo, PRL 2012;
Vijay, Hsieh & Fu, arXiv:1504.01724; Plugge et al. (in preparation)




‘ Majorana spin dynamics

Altland, Beri, Egger & Tsvelik, PRL 2014

> Overscreened multi-channel Kondo fixed point:
massively entangled effective impurity degree
remains at strong coupling: ,Majorana spin®

» Probe and manipulate by coupling of MBSs
— Zhjksjk

- ,Zeeman fields’ h, =-h, describe overlap of
MBS wavefunctions within same nanowire

. Zeeman fields couple to Sy =177




‘ Majorana spin near strong coupling

Bosonized form of Majorana spin at Kondo
fixed point: _
Sic =177k COS[®j(O)_ ®k(o)]

Dual boson fields ©,(x) describe ,charge* (not ,phase’)
In respective lead ,

Scaling dimension Y, =1_V — RG relevant

Zeeman field ultimately destroys Kondo fixed point &
breaks emergent time reversal symmetry

Perturbative treatment possible for T, <T <T,

\74

\74

\74

\74

M /2
h
dominant 1-2 Zeeman coupling: Th = (T—lz T K
K




Crossover SOM)—SO(M-2)

» Lowering T below T,, — crossover to another
Kondo model with SO(M-2) (Fermi liquid for M<5)

Zeeman coupling hy, flows to strong coupling —
v, 7, disappear from low-energy sector

Same scenario follows from Bethe ansatz solution
Altland, Beri, Egger & Tsvelik, JPA 2014

» Observable in conductance & in thermodynamic
properties




‘ SOM)—>SO(M-2): conductance scaling

for single Zeeman component h,, # 0 consider G; (j#1,2)

(diagonal element of conductance tensor)




‘ Multi-point correlations

» Majorana spin has nontrivial multi-point correlations at
Kondo fixed point, e.g. for M=3 (absent for SU(N) case)

.
<TrSj(T1)Sk(T2)SI (Ts)>~ T (Z_ Z_Jklz_ )1/3
k \T12T13% 23

» Observable consequences for time-dependent ,Zeeman’
field B;=¢&h, with B(t)= (B, cos(at), B, cos(m,t),0)
~  Time-dependent gate voltage modulation of tunnel couplings
~  Measurement of ,magnetization‘ by known read-out methods

- Nonlinear frequency mixing (Ss(t)) ~ B,B,cos|(e&; + , }t]
~ Oscillatory transverse spin correlations (for B,=0)
(5,(0)5,(0) ~ B, =t

(C()lt )2 /3




‘ Adding Josephson coupling: Non Fermi
liquid manifold

Eriksson, Mora, Zazunov & Egger, PRL 2014

H. .4 = EC(ZNC +ﬁ—ng)2 —E, cosg

island ~—

oy

with another bulk superconductor: Topological
Cooper pair box

Effectively harmonic oscillator for E; >> E¢
with Josephson plasma oscillation frequency Q=,/8E,E,




Low energy theory

» Tracing over phase fluctuations gives two
coupling mechanisms:

Resonant Andreev reflection processes
= >t (0~ (0))
J
Kondo exchange coupling, but of SO,(M) type

=J_¢Zk/1,-k(w, My . (0 )(l//k Ok, (0 )Wk

» Interplay of resonant Andreev reflection and
Kondo screening for T'<T,




‘ Quantum Brownian Motion picture

Abelian bosonization now yields (M=3)

Hy+Hy oc—> JTsin®; — [T, > cosd; cos @,
j

/

Simple cubic lattice bcc lattice




‘ Quantum Brownian motion

» Leading irrelevant operator (LIO): tunneling
transitions connecting nearest neighbors

» Scaling dimension of LIO from n.n. distance d
d2
27
Pinned phase field configurations correspond to

Kondo fixed point, but unitarily rotated by resonant
Andreev reflection corrections

» Stable non-Fermi liquid manifold as long as
L1O stays irrelevant, i.e. for Yo >1

yLIO — Yi & Kane, PRB 1998




‘ Scaling dimension of LLIO

» M-dimensional manifold of non-Fermi liquid
states spanned by parameters 4 _ F%

» Scaling dimension of LIO

y= min{Zéﬁl—iamsm(z(Maj— 1))ﬂ}

Stable manifold corresponds to y>1

For y<1: standard resonant Andreev reflection
scenario applies

For y>1: non-Fermi liquid power laws appear in
temperature dependence of conductance tensor




‘ Majorana surface code

» Recent interest on networks of interacting
Majorana fermions
~ perform topological (and universal) quantum
computation ?
» Surface code architecture

~ Encode logical qubit through many physical
gubits, with topological protection

~ Error detection via classical , software*

~ Superconducting qubits: cumbersome and
complicated, but at present most promising
approaCh Fowler, Mariantoni, Martinis & Clarke, PRA 86, 032324 (2012)




‘ Paradigm: Kitaev toric code

Kitaev & Laumann, arXiv:0904.2771

2D toric code: exactly solvable spin-1/2 model

on square lattice
H=—3.3 A - ZB ”
A= o 8=[lei A1
jestar (v) Jeop

~ All star and plaquette operators commute and
have eigenvalues +1

- Ground state:  A|¥)=B,|¥)=|¥)




Intrinsic topological order

» On surface of genus g: ground state has
degeneracy 49

» Quasiparticle spectrum:

selectric” charges (flip star operator) and
,mnagnetic* vortices (flip plaquette operator)

Individually behave as bosons
But: nontrivial mutual statistics
Abelian anyons




‘ Majorana surface code

Xu & Fu, PRB 2010; Terhal et al. PRL 2012;
Vijay, Hsieh & Fu, arXiv:1504.01724

Majorana plaguette model
H=-u) O,
P

O, :iHyJ

Jeop

—

i iz P .-"H' 'y
i ] |

i —y
i @: X T A M.:!"

L ! Y

— -:i"‘ r
. y K - r-".

e.g. for honeycomb lattice, but other lattices also work
All plaquette operators mutually commute, eigenvalues %1
Ground state is gapped and follows from Op\\P> = ‘\P>




Z, intrinsic topological order

» On torus (periodic boundary conditions in both
directions): Fourfold GS degeneracy

> Indicates intrinsic topological order

> Proof: Count degrees of freedom and constraints

» 2N2-1d.o.f.: for N MBS, we have 2NV2 dim Hilbert
space with conserved total parity I

- Constraints: TTo, =[]0, =[]0, =T =i"*[]7,

peA peB peC J
Each plaquette type (ABC) causes 2NV6-1 GS constraints
2N/2—1
) D - =4

(2N /6-1 )3




‘ Anyon excitations

» Elementary plaquette excitations (A,B,C) plus
composite objects (AB, BC, AC, ABC)

» Elementary excitation (A,B,C) have bosonic
self-statistics, but Berry phase 1T under
exchange of different types

» ABC equals the corner-shared Majorana
operator

» Plaguettes can be flipped only in pairs!




How to realize the Majorana plaquette
model experimentally ?

> Our prOpOsaI . Plugge, Landau, Sela, Albrecht, Altland & Egger,

In preparation
Use Coulomb-Majorana islands as in
topological Kondo effect, but form network of
such islands connected by tunneling contacts

» Lowest-order excitations yield plaquette
Hamiltonian & realize Kitaev toric code

» Read-out and manipulation of plaquettes by
simple conductance measurements

see talk by S. Plugge @ Natal workshop




‘ Summary Part V

» Probing the dynamics of strongly entangled
overscreened strong-coupling Kondo
,,impurity Spin“ Altland, Beri, Egger & Tsvelik, PRL 2014

» Coupling the island to another (grounded)
superconductor: Manifold of non-Fermi liquid

states Eriksson, Mora, Zazunov & Egger, PRL 2014

» Networks of interacting Majorana fermions:
Majorana surface code




‘ Summary of this course:

1.

Majorana fermions and Majorana bound
states (MBSs). Basics

Kitaev chain: Basics and realization

Majorana takes charge
Coupling Cooper pairs and Majorana fermions through
Coulomb charging effects

Topological Kondo effect
Stable overscreened multi-channel Kondo effect

Recent developments
THANK YOU FOR YOUR ATTENTION!
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