

CENTER FOR COMPUTATIONAL RELATIVITY AND GRAVITATION

NUMERICAL GENERATION OF VECTOR POTENTIALS FOR GENERAL **RELATIVITY SIMULATIONS** ZACHARY SILBERMAN MAGNETIC FIELDS IN THE UNIVERSE VI **Collaborators:** Joshua Faber (advisor), RIT OCTOBER 19, 2017 Zachariah Etienne, West Virginia University

Ian Ruchlin, West Virginia University Thomas Adams, West Virginia University

NUMERICAL RELATIVITY

HARM3D

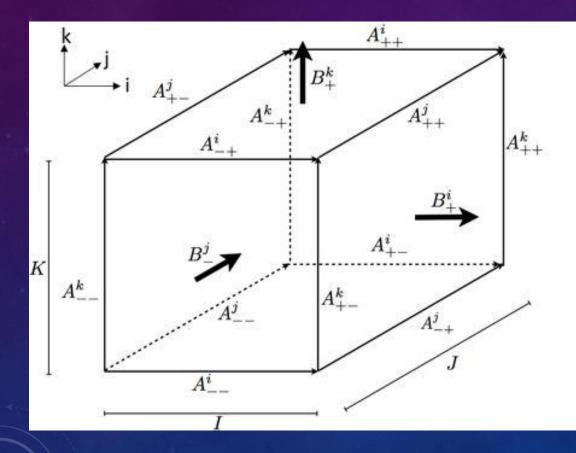
- Initial inspiral
- Approximations
- Evolves the magnetic field B

IllinoisGRMHD

- Merger
- Full Relativity
- Evolves the magnetic vector potential A

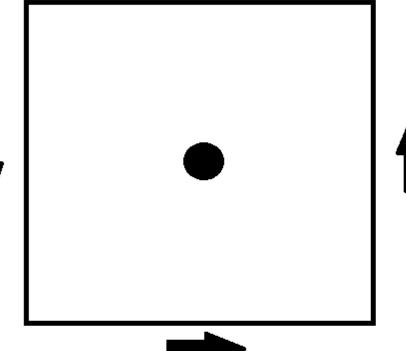
Gammie, McKinney, & Tóth 2003, Etienne et al. 2012

A STAGGERED CELL



- Different quantities are defined at different locations in the grid
- Cell centers, face centers, edge centers, vertices

STAGGERED GRID



CALCULATING THE CURL

I use a *centered* finite-differencing stencil to calculate the curl:

$$B_{\pm}^{i} = \frac{A_{\pm+}^{k} - A_{\pm-}^{k}}{J} - \frac{A_{\pm\pm}^{j} - A_{-\pm}^{j}}{K}$$

 with equivalent expressions for the other components of the magnetic field

CELL-BY-CELL GENERATION

Calculate the 12 A-field values of a cell using

- the 6 B-field values in that cell
- any A-field values from previously determined cells
- Seek to maximize symmetry of solution
- In cases where multiple solutions exist, attempt to minimize cell-to-cell variation in A

RIGHT NOW

- Interpolates the data into my staggered coordinates
- Removes any divergence in B, if any exists
- Builds the A field
- Transforms into Coulomb gauge: abla

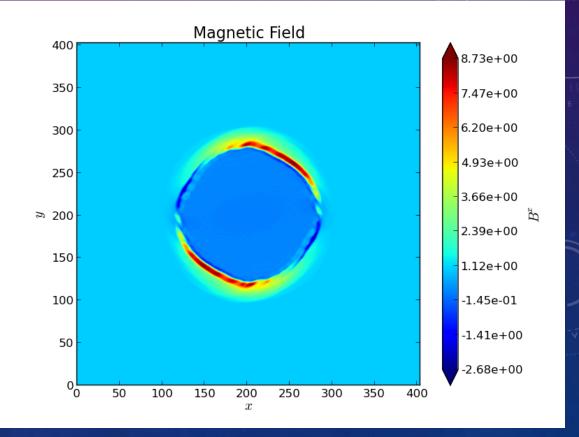
$$\nabla \cdot A = 0$$

- Performs smoothness tests
- Ensures that the curl of A is B
- It works!

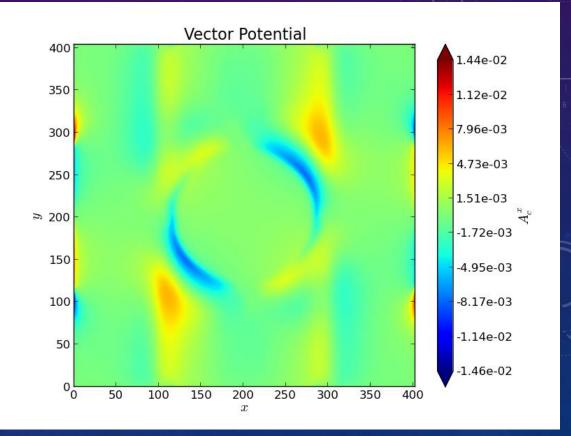
GLOBAL LINEAR ALGEBRA

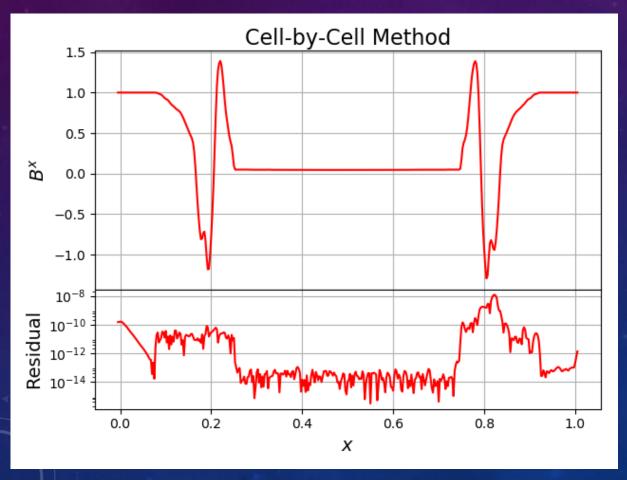
- Treat the curl operator as a matrix
- Include Coulomb gauge conditions
- More symmetric than the cell-by-cell method
- Also works!

- Initial B-field along x
- Edge of disk moving at 0.995c
- t = 0.2



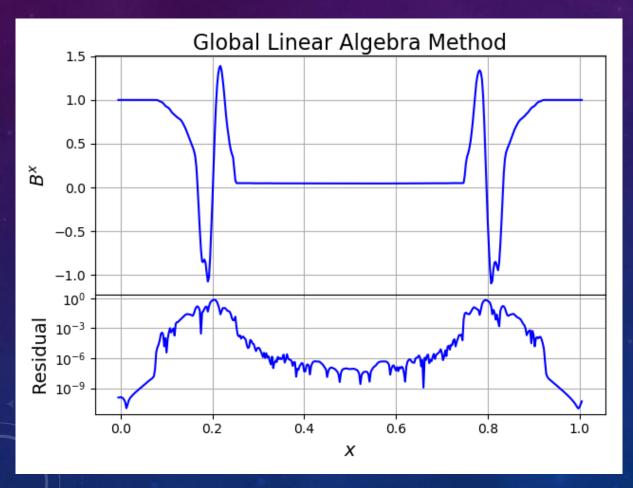
- Initial B-field along x
- Edge of disk moving at 0.995c
- t = 0.2





• Final time t=0.4

- Run 1:
 - t=0 to t=0.4
- Run 2:
 - t=0 to t=0.2
 - B->A
 - t=0.2 to t=0.4



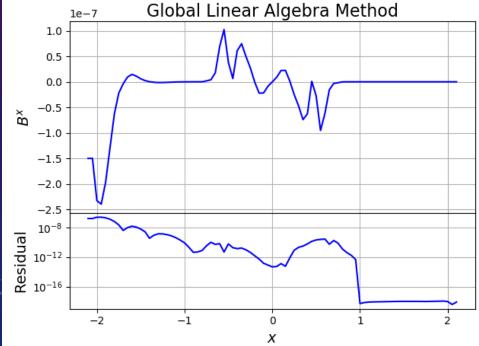
- Final time t=0.4
- Run 1:
 - t=0 to t=0.4
- Run 2:
 - t=0 to t=0.2
 - B->A
 - t=0.2 to t=0.4

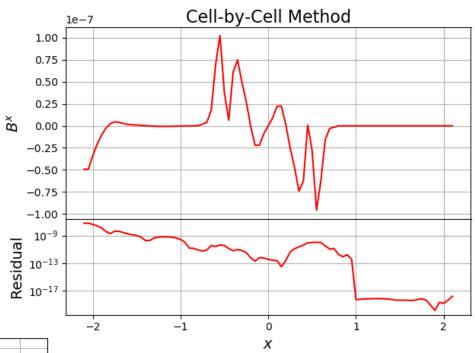
TOLMAN-OPPENHEIMER-VOLKOFF EQUATION

$$\frac{dP(r)}{dr} = -\frac{G}{r^2} \left[\rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + 4\pi r^3 \frac{P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{c^2 r} \right]^{-1}$$

- Structure of a body with:
 - Spherical symmetry
 - Isotropic material
 - Static gravitational equilibrium

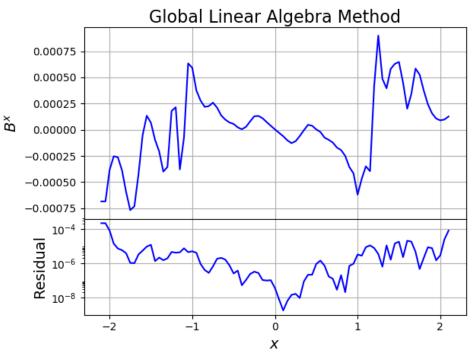
TOV STARS: STABLE

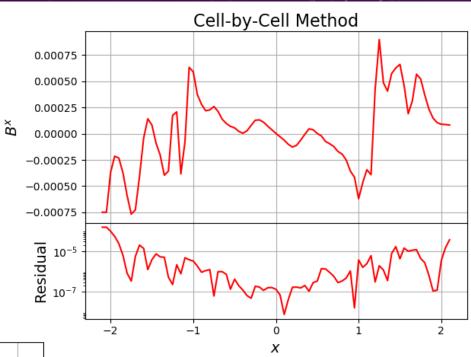




- Final time: 4t_{dyn} ≈ 11.2
 Restart Time: t_{dyn} ≈ 2.8

TOV STARS: UNSTABLE





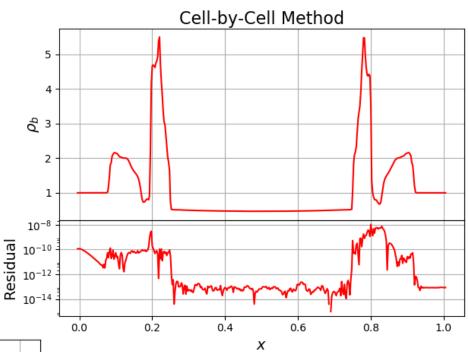
- Final time: $4t_{dyn} \approx 11.2$
- Restart Time: $t_{dyn} \approx 2.8$

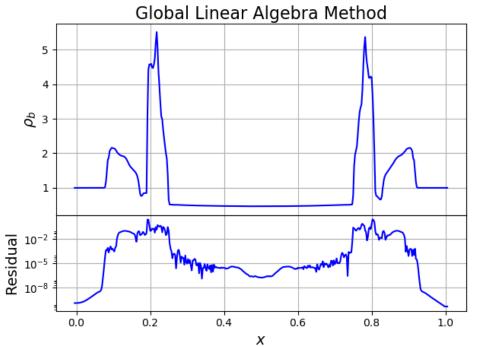
THE FUTURE

- More Evolution Tests
 - Continue taking A-field data for other configurations and evolve in time using the numerical relativity codes
- Mesh Refinement
 - Create multiple levels of data, where for example the grid spacing of one level is half that of another
- Use with HARM3D and IllinoisGRMHD
 - Run full binary black hole simulations

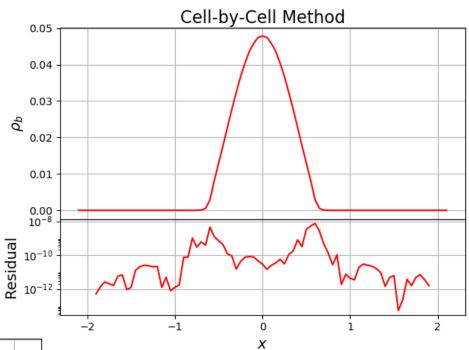
BONUS SLIDES

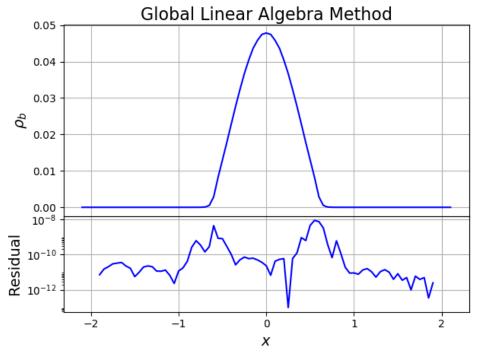
ROTOR DENSITY





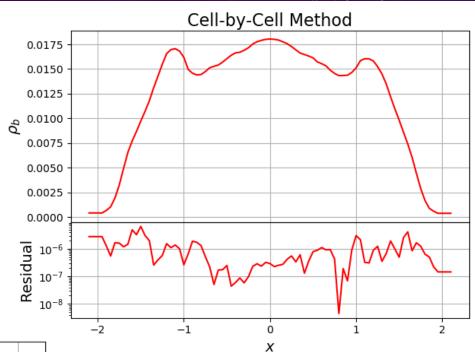
TOV DENSITY: STABLE

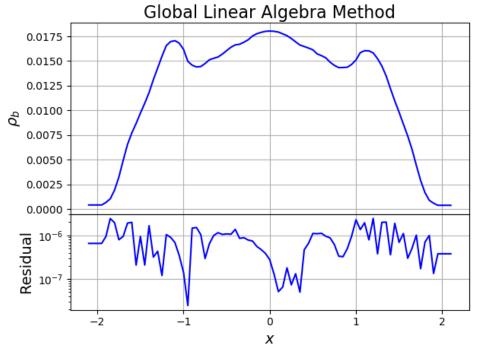




19

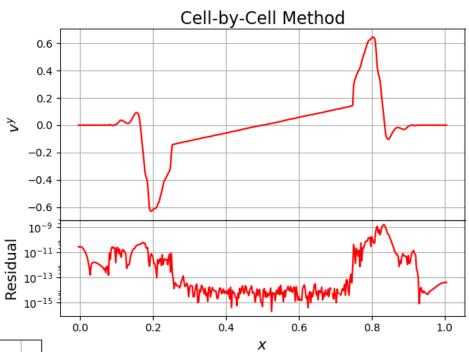
TOV DENSITY: UNSTABLE

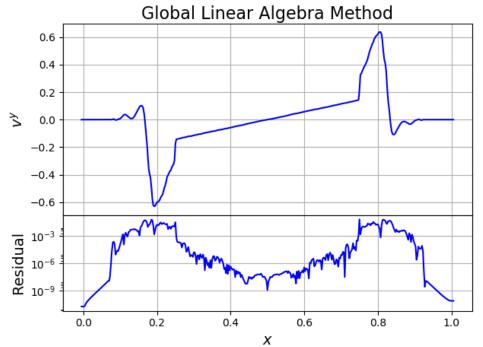




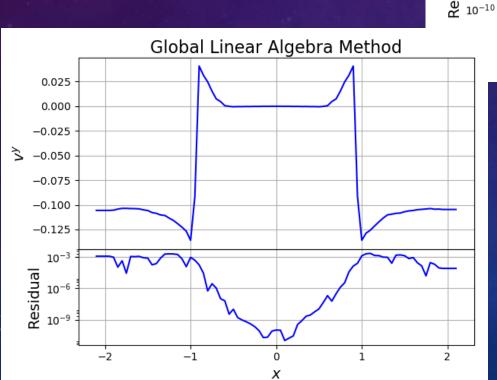
20

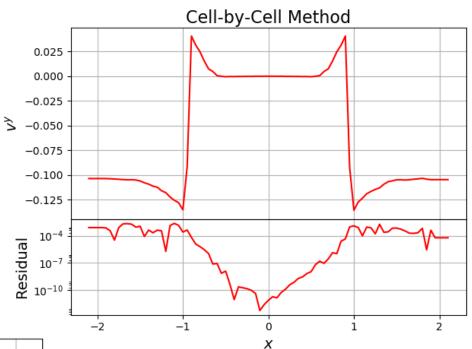
ROTOR VELOCITY



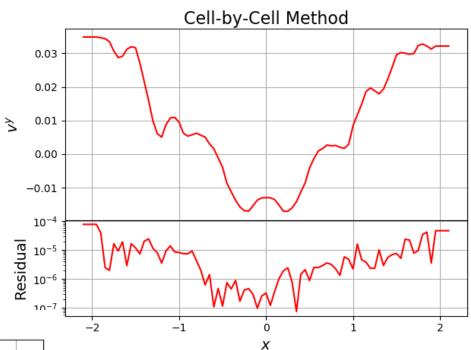


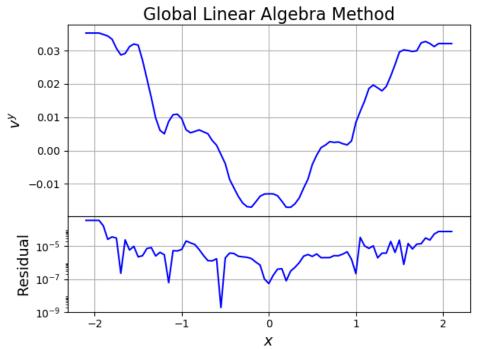
TOV VELOCITY: STABLE





TOV VELOCITY: UNSTABLE





NO MONOPOLES

 The divergence-free nature of the magnetic field can be ensured by defining a vector potential. Maxwell's equations imply:

$$\nabla \cdot B = 0$$
$$B = \nabla \times A$$

Getting from A to B is easy; getting from B to A is not!

DIVERGENCE REMOVAL

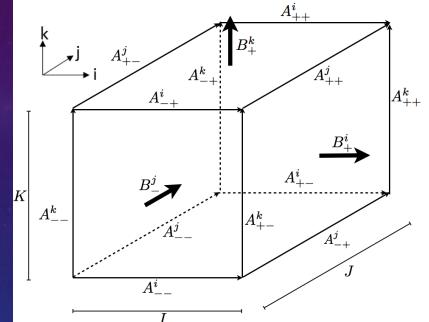
 The divergence is calculated for a cell by finite differencing, using the centered stencil

$$\nabla \cdot B = \frac{B_{+}^{i} - B_{-}^{i}}{I} + \frac{B_{+}^{j} - B_{-}^{j}}{J} + \frac{B_{+}^{k} - B_{-}^{k}}{K}$$

- If this is non-zero, magnetic flux is symmetrically removed through the faces of the cell
- My A-field solver introduces no divergence by construction

SINGLE CELL SYMMETRY CONSIDERATIONS

- Each edge takes values based on:
 - The two neighboring faces
 - The two opposite faces
 - NOT the perpendicular faces!



$$\begin{aligned} A^{k}_{--} &= \alpha(-JB^{i}_{-} + IB^{j}_{-}) + \beta(-JB^{i}_{+} + IB^{j}_{+}) \\ A^{k}_{-+} &= \alpha(-JB^{i}_{+} - IB^{j}_{-}) + \beta(-JB^{i}_{-} - IB^{j}_{+}) \\ A^{k}_{++} &= \alpha(JB^{i}_{+} - IB^{j}_{+}) + \beta(JB^{i}_{-} - IB^{j}_{-}) \\ A^{k}_{+-} &= \alpha(JB^{i}_{-} + IB^{j}_{+}) + \beta(JB^{i}_{+} + IB^{j}_{-}) \end{aligned}$$

GAUGE CONDITIONS

- My results are in an arbitrary gauge, dependent on the order I evaluate my cells
- Coulomb: $\nabla \cdot A = 0$
- There is a prescription to take an arbitrary gauge and produce a Coulomb gauge solution:

Let
$$A_c = A - \nabla \phi_C$$

 $0 = \nabla \cdot A_c = \nabla \cdot A - \nabla^2 \phi_C$