Magnetism Morphology in the ISM

Susan E. Clark | Hubble Fellow, Institute for Advanced Study

Josh Peek (STScI), Mary Putman (Columbia), J. Colin Hill (IAS), The GALFA-HI Collaboration

Norphology encodes complex physical information

Low frequency observations show complicated polarization structure.

Zaroubi+ 2015 Jelić+ 2015

-3 to -0.5 rad / m² +0.5 rad / m² +1 to +4.5 rad / m² Planck B-field

Galactic Arecibo L-Band Feed Array Survey (GALFA-HI)

10

13,000 deg²
FWHM ~ 4' spatial resolution
0.18 km/s spectral resolution
~140 mK rms brightness temperature noise per 1 km/s integrated channel

Do linear HI structures trace the magnetic field?

GALFA-HI: Peek+ in prep

The Rolling Hough Transform Clark, Peek, & Putman 2014, ApJ 789, 82

Malinen+ 2016

Asensio Ramos+ 2017

The Hough Transform was originally conceived to detect lines in bubble chamber photos.

Hough space

ρ

Measure intensity as a function of angle.

Store intensity as a function of angle for every image pixel.

 \mathcal{Y}

 \mathcal{X}

Linear features in HI correlate with starlight polarization.

Starlight polarization: Heiles 2000

The correlation is tighter with high-resolution HI.

The correlation is tighter with high-resolution HI.

SGPS GC Survey McClure-Griffiths+ 2006

The Planck satellite mapped the full sky in 353 GHz polarized dust emission.

ESA/Planck Collaboration Planck Intermediate Results XIX Calculate Stokes parameters from the HI orientation.

 $R\left(heta,x,y
ight)$

Calculate HI and Planck magnetic field orientation.

Neutral hydrogen orientation

Planck magnetic field orientation

 $\theta_{353} = \psi_{353} + 90^{\circ}$

Characterize the orientation of high-latitude GALFA-HI structures.

-3 km/s 0 km/s +3 km/s

Starlight polarization: Heiles 2000

Characterize the orientation of high-latitude GALFA-HI structures.

Starlight polarization: Heiles 2000

High latitude GALFA-HI structures are aligned with the Planck magnetic field orientation.

Starlight polarization: Heiles 2000

High latitude GALFA-HI structures are aligned with the Planck magnetic field orientation.

FWHM = 30' $\sigma \sim 14^{\circ}$

We study the E/B decomposition of template maps derived from HI orientation.

$Q' = I_{353} \cdot \cos(2\theta)$ $U' = I_{353} \cdot \sin(2\theta)$

 θ_{RHT} θ_{353} θ_{\star}

We detect strong cross-correlations between RHT, 353 GHz, and starlight polarization angles.

EE/BB asymmetry: Planck Intermediate Results XXX, XXXVIII

 \mathcal{X}

What can we learn about the magnetized ISM from the velocity structure of HI linearity?

V1

V2

V3

V4

fourth dimension: velocity

Can we learn about the LOS magnetic field?

Polarized dust emission region

Can we learn about the LOS magnetic field?

HI velocity channel

Can we learn about the LOS magnetic field?

The dispersion of HI orientation traces LOS depolarization.

The dispersion of HI orientation traces LOS depolarization.

HI coherence

Clark 2017, in prep

or or in in ar Multiwavelength explorations will reveal the nature of the magnetic ISM.

Zaroubi+ 2015 Jelić+ 2015 Kerp & Kalberla 2016 Kalberla+ 2017

GALFA-HI DR2

+PPV data +HI column density +RHT maps

Peek+ in press

120°

GALFA-HI DR2

+PPV data +HI column density +RHT maps

Peek+ in press

Neutral hydrogen in the diffuse ISM is aligned with the interstellar magnetic field.

Clark+ 2014, ApJ

Clark+ 2015, PRL

The velocity structure of HI morphology probes line-of-sight magnetic field tangling. Clark 2017, in prep

> DR2 of GALFA-HI will soon be public! Peek+ 2017, ApJS accepted