Magnetized Molecular Cloud Formation and Dynamics

Mordecai-Mark Mac Low Juan C. Ibáñez-Mejía

Joshua E. Wall

Stephen McMillan

Ralf S. Klessen

ESA/Herschel/PACS, SPIRE/Gould Belt survey Key Programme/Palmeirim et al. 2013

Larson's size-velocity relation has been argued to result from turbulent driving.

But, it only applies to a narrow range of column densities.

Figure 2. Heyer's relation $(\delta v/r^{1/2}$ versus surface density Σ) for the clouds reported in Heyer et al. (2009) and Gibson et al. (2009). Note that the massive

Model ingredients

Modeling the turbulent ISM with Flash

Morphology

Modeling the turbulent ISM with Flash

Morphology

Modeling the turbulent ISM with Flash

Ibáñez-Mejía + 16

Model

Zooming-in to collapsing clouds

Evolution and collapse of a dense cloud

Evolution and collapse of a dense cloud

Resolution study of energy: acceptable 25% variation

Ibáñez-Mejía et al. 2017, in press, ArXiv: 1705.01779

Morphology

Field angle varies

Morphology

Field angle varies

Dense clouds collapse quickly while accreting.

Ibáñez-Mejía et al. 2017, in press, ArXiv:1705.01779

Results

Gravitational energy dominates cloud evolution.

Ibáñez-Mejía et al. 2017, in press, ArXiv: 1705.01779

Results

Contraction dominates over accretion for KE.

Ibáñez-Mejía et al. 2017, in press, ArXiv:1705.01779

Results

Trans-Alfvénic envelope, super-Alfvénic core

Histogram of relative orientations (HRO) between magnetic field and density *gradient* shows moderate alignment in envelope, none in core with $n > 10^3$ cm⁻³.

Ibáñez-Mejía, thesis & in prep +18

Alfvénic Mach number inside and around a cloud

- Nearby SN feedback maintains the diffuse ISM super-Alfvénic.
- Cloud envelopes are mostly trans-Alfvénic to mildly super-Alfvénic.
- gravitational contraction drives fast, super-Alfvénic, motions inside the cloud

Ibáñez-Mejía et al. 2018, in prep

Coupling between AMUSE and Flash

Wall, M-MML, McMillan, Klessen, Portegies-Zwart, in prep

Wall, M-MML, McMillan, Klessen^{0.6} Portegies-Zwart, in prep

> 2400 AU resolution

 $10^4 \ M_{\odot}$ test cloud

Wall, M-MML, McMillan, Klessen, Portegies-Zwart, in prep

Wall, M-MML, McMillan, Klessen, Portegies-Zwart, in prep

Wall, M-MML, McMillan, Klessen, Portegies-Zwart, in prep

Conclusions

- In the absence of star formation and internal feedback, gravitational contraction seems to be the main driver of non-thermal motions inside dense clouds.
- Nearby SN explosions both compress the clouds' envelopes, increasing mass accretion rates, and erode the surface and fragment the cloud.
- Gas flows around clouds are predominantly trans-Alfvénic, so magnetic fields play an active role regulating mass accretion rates.
- Magnetic fields inside dense clouds seem unable to prevent collapse. Hierarchical gravitational contraction drives super-Alfvénic internal motions.
- HII region expansion carries the field with it, but angle of observation matters.