DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

Dunlap Institute for Astronomy & Astrophysics UNIVERSITY OF TORONTO

A new model to explain radial magnetic fields in young supernova remnants

Magnetic Fields in the Universe October 17, 2017

Jennifer West, Postdoctoral Fellow

Gilles Ferrand RIKEN

Samar Safi-Harb U.Manitoba

Tess Jaffe NASA

Tom Landecker DRAO Roland Kothes DRAO

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

- 1. Brief background on supernova remnants
- 2. Summary of previous work: supernova remnants and the Galactic magnetic field
- 3. Radial magnetic fields in young supernova remnants

SUPERNOVA EXPLOSION

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

SUPERNOVA

REMNANT

Dunlap Institute for
Astronomy & Astrophysics
UNIVERSITY OF TORONTO

Evolutionary Phases of Supernova Remnant Shells

		ATSEN	
		En P	
		A. K.	Store.
		ADY.	<u>)</u> .

FREE EXPANSION PHASE	SEDOV PHASE	RADIATIVE PHASE	
First ~1000 years	1000-30,000 years	30,000 years+	
Radius ~7 pc (20 ly)	Radius ~35 pc (100 ly)	Radius ~65 pc (200 ly)	
eg. Cas A (Credit: NASA/CXC/SAO)	eg. RCW86 (Credit: MOST, Chandra, WISE)	eg. S147 (Credit: Stefan Binnewies, Rainer Sparenberg)	

What do magnetic fields tell us about cosmic ray acceleration?

Soft X-Rays Hard X-Rays

Credit: NASA/CXC/Middlebury College/F.Winkler

Number of cosmic rays (logarithmic scale) —

What do magnetic fields tell us about cosmic ray acceleration?

Radio Soft X-Rays Hard X-Rays

Credit: NASA/CXC/Middlebury College/F.Winkler

Number of cosmic rays (logarithmic scale)

Is there a connection between the Galactic magnetic field and the morphology of supernova remnants?

Gaensler (1998): a highly significant tendency for the axes of these SNRs to be aligned with the Galactic plane

Leckband et al. (1989): no preferred orientation between the angle of symmetry and the Galactic plane

G003.8-00.3

G332.0+00.2

G046.8-00.3

Model Synchrotron Intensity

G003.7-00.2

G036.6+02.6

G054.4-00.3

West et. al 2016

Reich 2002

Milne 1987

SN1006

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS

Cosmic Ray Electron Distribution

CRE distribution scaled by $\sin^2 \phi_{Bn2}$

CRE distribution scaled by $\cos^2 \phi_{Bn2}$

Direction of the ambient magnetic field

Where: ϕ_{Bn2} is the angle between the shock normal and the post-shock magnetic field

q

Regular component

Random component

Radial component

Random magnetic field with quasi-parallel acceleration

Simulated observation

West+ 2017 (submitted)

Conclusions

- 1. Supports a simple compressed magnetic field model in **evolved**, bilateral supernova remnants
- 2. Supports a connection between Galactic interstellar medium and supernova remnant morphology
- 3. Possible distance determination method: both for supernova remnants and possibly for some features in the Galactic magnetic field
- 4. Possible selection effect due to cosmic ray distribution: quasi-parallel acceleration can make a turbulent field look radial
- 5. Intrinsic radial component in young SNRs?

DUNLAP INSTITUTE *for* **ASTRONOMY** & **ASTROPHYSICS**

www.dunlap.utoronto.ca

Use the Coordinate Transformation to Transform the Magnetic Field in 3D

DUNLAP INSTITUTE for ASTRONOMY & ASTROPHYSICS Dunlap Institute for
Astronomy & Astrophysics
UNIVERSITY OF TORONTO

Supernova remnant Models & Images at Radio Frequencies (SMIRF) http://www.physics.umanitoba.ca/snr/smirf/

> West et al. 2016, A&A West et al. 2017, A&A West et al. 2017 in prep