

Magnetic field is important!

SFR

Molecular cloud

B

X-ray: NASA/CXC/PSU/K. Getman et al.; IRL NASA/JPL-Caltech/CfA/J. Wang et al.

GRB

See Talk by ASA, EVEryone ASA, EBA, J. Hester and A. Loll

(AURA/STScI)/HEIC

H II Region

Galactic plane

NASA

NASA:ES

R

PDR

AGN outflows

SNR

Gemini Observatory

Atomic Alignment: The B Tracer

Interstellar medium

Anisotropic radiation

Interstellar medium

Anisotropic, radiation

Line of sight

Atomic Alignment induces **Polarized ABSORPTION & Scattered lines** according to the direction of **Magnetic Field**

Interstellar medium

B

Fine structure (submm, IR) transitions within the aligned ground state

✓ qualitative measurement is adequate for determining 2D field in the pictorial plane (Yan & Lazarian 2008).

Atomic alignment Regime

The realignment happens if $\tau_L^{-1} \gg A_m$

Review, Yan & Lazarian (2012)

Time scale

$v_L (s^{-1})$	Larmor precession frequency	еВ	88(B/5 µG)
$ au_{R}^{-1}$ (s ⁻¹)	Radiative pumping rate	т _е с В _{J,J_u} I	$7.4 \times 10^5 \left(\frac{R_*}{R_*}\right)^2$
$ au_T^{-1}$ (s ⁻¹)	Emission rate within ground state	A _m	(r) 2.3 × 10 ⁻⁶
τ_{c}^{-1} (s ⁻¹)	Collisional transition rate	$\max(f_{kj}f_{sf})$	$6.4\left(\frac{n_e}{0.1 \mathrm{cm}^{-3}}\sqrt{\frac{8000 \mathrm{K}}{T}}\right) \times 10^{-9}$

Direction of Polarization Enough for 2D Magnetic Field with 90° degeneracy

submillimeter spectropolarimetry as a Magnetic tracer

[C II] λ 157µm polarization (%) v₂=0km/s

[C II] λ 157 μ m polarization (%) v_z=0km/s

[C II] λ 157 μ m polarization (%) v_z=0km/s

Normal waffle vs Oreo?

See talk by Susan & Ka ho

VS

[C II] λ 157 μ m polarization (%) v_z=+1km/s

[C II] λ 157µm polarization (%) v₇=+1km/s

Submillimeter emission lines in SFRs

Table 1. Maximum Polarization FOR SUBMILLIMETER EMIS-SION LINES

Species	Transition	Wavelength	$max(P_{em})$
[C I]	$3P_1 \rightarrow 3P_0$	610µm	21%
[C I]	$3P_2 \rightarrow 3P_1$	370µm	18%
[C II]	$2P_{3/2}^{\circ} \rightarrow 2P_{1/2}^{\circ}$	157.7µm	28.5%
[O I]	$3P_1 \rightarrow 3P_2$	63.2µm	4.2%
[Si 11]	$2P_{3/2}^{\circ} \rightarrow 2P_{1/2}^{\circ}$	34.8µm	12.6%
[S I]	$3P_1 \rightarrow 3P_2$	25.2µm	3.2%
[Fe II]	$a6D_{7/2} \rightarrow a6D_{9/2}$	26.0µm	4.9%

Submillimeter absorption lines in Foreground medium

Table 2. Maximum Polarization FOR SUBMILLIMETER AB-SORPTION LINES

Species	Transition	Wavelength	$max(P_{ab})$
[C I]	$3P_1 \rightarrow 3P_2$	370µm	2%
[O I]	$3P_2 \rightarrow 3P_1$	63.2µm	30.8%
[O I]	$3P_1 \rightarrow 3P_0$	145.5 <i>µm</i>	49.1%
[S I]	$3P_2 \rightarrow 3P_1$	25.2µm	27.7%
[S I]	$3P_1 \rightarrow 3P_0$	56.3µm	45.2%
[Fe II]	$a6D_{9/2} \rightarrow a6D_{7/2}$	26.0µm	9.9%

Advantages of Atomic Alignment as a Magnetic Field Tracer

CR Probing the degree of polarization of the line can give us 3 D information of the magnetic field.

- consistive to weak magnetic field
- capplicable to all diffuse interstellar medium
- CR Different options of observation: both absorption and emission lines.
- ca Multi-scale magnetic pattern
- CR Complimentary to other magnetic tracer, e.g., dust alignment

Conclusions

Polarization of atomic lines is a universal and promising magnetic tracer in diffuse interstellar medium due to atomic alignment effect.

A good measurability calls for cooperation with observers. Let's unveil the magnetic fields in the distant universe!

Atomic Alignment in comparison with Dust Alignment:

- Provide independent test to grain alignment theory.
- Sensitive to smaller scale fluctuations.
- Combining the information from both, we can get more precise 3D information of magnetic field.

Atomic Alignment applies to general anisotropic radiation as a Magnetic Tracer!

Magnetic study in astrophysics

Most common ways of magnetic field study:

- CR Zeeman splitting (B_{//}) :strong magnetic fields in dense and cold cloud(Crutcher 2004, etc)
- GR Faraday rotation(B_{//}) :large scale field(Crutcher 2008,
 etc)
- Grain alignment(B₁):widely used, some uncertain on shape and composition(Lazarian 2007, etc) No universal magnetic diagnostics in diffuse medium!