

Instituto de Ciencias Nucleares UNAM

STUDYING THE INTERSTELLAR MAGNETIC FIELD MEASURING THE ANISOTROPY IN VELOCITY

Alejandro Esquivel (ICN-UNAM, Mexico)

in collaboration with David Hernández-Padilla (ICN-UNAM, Mexico) Alex Lazarian (UW-Madison, USA), Jungyeon Cho (Chungnam National Univ., Korea)

Magnetic Fields in the Universe VI: From Laboratory and stars to the primordial structures (Natal, Brazil)

THE INTERSTELLAR MEDIUM (ISM) IS TURBULENT

- Theory
 - The Reynolds number in the ISM: *Re*>10⁸ (current computers can only reach ~10⁴)
- Observations
 - Line widths show a "non-thermal" component.
 - Density/velocity/magnetic field fluctuations show a self-similar structure.
- Important for:
 - cosmic ray scattering and acceleration,
 - molecular cloud dynamics,
 - star formation,
 - mixing of elements,
 - magnetic field generation,
 - accretion processes,
 - ... virtually any transport process in the ISM.

"The great power law in the sky" Chepurnov & Lazarian (2010)

HOW DO WE STUDY TURBULENCE?

- Statistical tools, such as:
 - structure/correlation functions,

 $SF(r) = \left\langle \begin{bmatrix} v(x_1) - v(x_2) \end{bmatrix}^2 \right\rangle$ $r = \left| x_2 - x_1 \right|$ $CF(r) = \left\langle v(x_1) \cdot v(x_2) \right\rangle$ $SF(r) = 2\begin{bmatrix} CF(0) - CF(r) \end{bmatrix}$

• or power spectra

KOLMOGOROV MODEL OF TURBULENCE

- Model for incompressible HD turbulence
 - Energy injected at large scales, cascades without losses until dissipation takes over (inertial range).
 - Constant Energy transfer rate $\dot{\mathcal{E}} \approx \frac{\rho v_{\ell}^2}{\tau} \sim \frac{v_{\ell}^2}{\ell/v_{\ell}} \sim \frac{v_{\ell}^3}{\ell} \Rightarrow v_{\ell} \propto \ell^{1/3} \sim k^{-1/3}$
 - The energy power spectrum P(k)

$$\int P(k)dk \propto v_{\ell}^2 \Rightarrow P(k) \propto \frac{k^{-2/3}}{k} \sim k^{-5/3}$$

In 1D: $P(k) \propto k^{-5/3}$ In 2D: $P(k) \propto k^{-8/3}$ In 3D: $P(k) \propto k^{-11/3}$

MHD TURBULENCE IS ANISOTROPIC (AND SCALE DEPENDENT)

- Goldreich & Sridhar (1995) MHD turbulence model
 - Anisotropic cascade:
 - Motions perpendicular to B follow a Kolmogorov type cascade $v_l \propto l_{\perp}^{1/3}$
 - Parallel B are dominated by Alfvénic perturbations
 - A critical balance condition relate the two $\frac{v_{\perp}}{l_{\perp}} \sim \frac{v_A}{l_{\parallel}} \Rightarrow l_{\parallel} \sim l_{\perp}^{2/3}$
 - Later confirmed with numerical simulations (Cho & Vishniac 2000, Maron & Goldreich 2001)
 - The anisotropy should be measured with respect to the *local* magnetic field

Cho, Lazarian & Vishniac (2002)

GRID OF MHD MODELS

- Ideal 3D MHD simulations of fully developed (driven at large scales) turbulence.
- Isothermal, in a periodic Cartesian grid.
- The parameters that control the simulations are the Alfvén and the sonic Mach numbers.

$$M_{\rm s} \equiv \frac{v_{\rm L}}{c_{\rm s}}; \quad M_{\rm A} = \frac{v_{\rm L}}{v_{\rm A}}$$

• where

$$c_{\rm s} = \sqrt{\frac{P}{\rho}}; \quad v_{\rm A} = \frac{B}{\sqrt{4\pi\,\rho}}$$

- B₀ is in the *x* direction.
- We take the output of the simulations to create synthetic spectroscopic observations of optically thin media.

Model	$v_{\mathrm{A},0}$	$P_{\rm gas,0}$	\mathcal{M}_{A}	\mathcal{M}_{s}	β
M1	0.1	0.0049	~ 8.3	~ 11.9	~ 0.49
M2	0.1	0.0100	~ 7.7	~ 7.7	~ 1.0
M3	0.1	0.0250	~ 7.4	~ 4.7	~ 2.5
M4	0.1	0.0500	~ 7.6	~ 3.4	~ 5.0
M5	0.1	0.1000	~ 8.2	~ 2.6	~ 10.0
M6	0.1	0.7000	~ 7.6	~ 0.9	~ 70.0
M7	0.1	2.0000	~ 7.0	~ 0.5	~ 200.0
M8	1.0	0.0049	~ 0.8	~ 10.8	~ 0.0049
M9	1.0	0.0077	~ 0.8	~ 8.6	~ 0.0077
M10	1.0	0.0100	~ 0.7	~ 7.4	~ 0.01
M11	1.0	0.0250	~ 0.8	~ 4.8	~ 0.025
M12	1.0	0.0500	~ 0.8	~ 3.4	~ 0.05
M13	1.0	0.1000	~ 0.8	~ 2.7	~ 0.1
M14	1.0	0.7000	~ 0.8	~ 1.0	~ 0.7
M15	1.0	2.0000	~ 0.7	~ 0.5	~ 2.0
M16	2.0	0.0100	~ 0.4	~ 7.6	~ 0.0025
M17	2.0	0.1000	~ 0.4	~ 2.7	~ 0.025
M18	2.0	1.0000	~ 0.5	~ 1.0	~ 0.25
M19	3.0	0.0100	~ 0.3	~ 8.2	~ 0.001
M20	3.0	0.1000	~ 0.3	~ 2.6	~ 0.01
M21	3.0	1.0000	~ 0.3	~ 1.0	~ 0.1
M22	5.0	0.0100	~ 0.2	~ 9.0	~ 0.0004
M23	5.0	0.1000	~ 0.2	~ 2.7	~ 0.004
M24	5.0	1.0000	~ 0.2	~ 0.9	~ 0.04

SYNTHETIC OBSERVATIONS

Model M13 (with $M_s=2.7$ and $M_A=0.8$)

Simulation PPP (x,y,z) space

Synthetic Observations PPV (x,y,v_z) space

Density cuts

Intensity $\propto
ho$

PPV DATA: THE EFFECT OF VARYING RESOLUTION

- Emissivity in PPV data depends on density and velocity at the same time.
- Lazarian & Pogosyan (2000) study the effect of varying the thickness in velocity channels (velocity resolution) to obtain the velocity spectral index from observations.
 - As we lower the velocity resolution, the contribution of density becomes more prominent. In thinner velocity channels the velocity can dominate the spectrum.

(SYNTHETIC) OBSERVATIONAL DATA

Column density
$$N(x,y) = \int I(x,y,v_{\text{los}}) dv_{\text{los}},$$

$$N(x,y) = \int \rho(x,y,z) dz$$
 (Optically thin media, LOS=z)

column density LOS=X column density LOS=Y column density LOS=Z

(SYNTHETIC) OBSERVATIONAL DATA

1

Velocity Centroids (unnormalized)

$$C_{\rm los}(x,y) = \int I(x,y,v_{\rm los}) v_{\rm los} \, dv_{\rm los},$$

$$C_{\rm z}(x,y) = \int
ho(x,y,z) v_{\rm z}(x,y,z) dz$$
 (Optically thin media, LOS=z)

ANISOTROPY IN VELOCITY CENTROIDS

• The structure function of velocity centroids $SF(\mathbf{R}) = \langle [C(\mathbf{X}) - C(\mathbf{X} + \mathbf{R})]^2 \rangle$,

Velocity centroids are a combination of density and velocity fluctuations. To isolate velocity one can use from the simulations maps of mean LOS velocity, e.g.

$$V_z(x,y) = \frac{1}{N_z} \int v(x,y,z) \, dz$$

The SFs are elongated in the direction of the mean magnetic field.

Esquivel & Lazarian (2011)

HOW DOES THE ANISOTROPY OF CENTROIDS DEPENDS ON SCALE

- Velocity centroids sample the entire LOS at a given velocity, thus one probe the mean magnetic field (as opposed to the local one)
 - Isotropy degree(ℓ) = $\frac{SF(R_{\parallel})}{SF(R_{\perp})}$.
 - velocity centroids anisotropy is (mostly) SCALE INDEPENDENT.

AVERAGE ISOTROPY DEGREE

Higher magnetization \rightarrow more elongated structure functions, but...

Burkhart et al. (2014)

ADVANTAGE OF CENTROIDS: WE HAVE THEORY BEHIND THEM

- Recently Kandel, Lazarian & Pogosyan (MNRAS, 2016a,b) extended the VCA formalism to study the anisotropy in PPV and velocity centroids.
- They study the level of anisotropy in the different velocity modes in the SF of velocity centroids (at a constant density)
 - Alfvén Mode:

anisotropic at low and high β , with more pronounced anisotropy at small M_A .

• Slow mode:

Same general behavior as the Alfvén mode, but with vanishing signal at an angle perpendicular to B_0 .

 Fast mode: Isotropic in high-β, but anisotropic in low-β

DIFFERENT MHD MODES ARE ALL PRESENT IN THE VELOCITY

- We decompose the velocity into Alfvén, Fast and Slow magneto-sonic modes.
- We take each of the velocity fields and compute the mean LOS velocity, and centroids combining such velocities with the original velocity.

Cho & Lazarian 2002

EXAMPLE OF DECOMPOSED MODES MAPS (PARALLEL TO B₀)

centroids LOS=X

$$C_{\mathbf{x}}(y,z) = \int \rho(x,y,z) \, v_{\mathbf{x}}(x,y,z) \, dx$$

centroids (Alfvén) LOS=X

centroids (fast) LOS=X

centroids (slow) LOS=X

EXAMPLE OF DECOMPOSED MODES MAPS (PERPENDICULAR TO B₀)

centroids LOS=Y

-100

-200

-300

-400

-500

$$C_{\mathbf{y}}(x,z) = \int \rho(x,y,z) \, v_{\mathbf{y}}(x,y,z) \, dy$$

centroids (Alfvén) LOS=Y

centroids (fast) LOS=Y

centroids (slow) LOS=Y

AVERAGE ISOTROPY DEGREE FOR ALL MODES

SUMMARY/CONCLUSSIONS

- Structure functions in velocity centroids are anisotropic.
- Such anisotropy points in the direction of the plane of the sky B field.
- The degree of anisotropy increases with the strength of B_0 (i.e. $\sim 1/M_A$), with a secondary dependence on the sonic Mach number (M_S).
 - Thus given an estimate of M_S one can infer an upper bound on the Alfvénic Mach number.
 - With help of other techniques/measurements for the LOS component one could determine M_{A} .
- The Alfvén mode is the dominant contribution to the centroids map, and thus their structure function when the LOS is perpendicular to B₀ (maximum anisotropy).
- The slow mode dominates in the case of LOS parallel to B₀, but the SFs are isotropic from that point of view.
- These results are consistent with those previously obtained with velocity centroids (Esquivel & Lazarian 2011, Burkhart et al. 2014).
- Also consistent with analytical predictions for the Alfvén modes by Kandel et al. 2016.