Optical tweezers

Material o Model and Results

Applications

Conclusions and Prospects

Topological insulator particles as optically induced oscillators: Towards dynamical force measurements and optical rheology

Warlley Hudson Campos

warlley.campos@ufv.br

Departamento de Física - Universidade Federal de Viçosa

https://sites.google.com/site/grupotcfmc https://sites.google.com/site/fisbiol

TOPOLOGICAL STATES OF MATTER - IIP/NATAL/BRAZIL

Collaborators: J.M. Fonseca, J.B.S. Mendes, M.S. Rocha, W.A. Moura-Melo - DPF/UFV V.E. Carvalho - DPF/UFMG

Warlley H. Campos

Optical tweezers

o Material

Model and Results

Applications

Conclusions and Prospects

Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.

Warlley H. Campos

Topological Insulators ●○○	Optical tweezers	Material o	Model and Results	Applications 0	Conclusions and Prospects
3D Topolo	gical Insu	llators	5		

Theoretically predicted in 2007

PRL 98, 106803 (2007)	PHYSICAL	REVIEW	LETTERS	9 MARCH 2007
PRL 98, 106803 (2007)			DETTERO	9 MARCH 2

Topological Insulators in Three Dimensions

Liang Fu, C. L. Kane, and E. J. Mele

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 26 July 2006; published 7 March 2007)

Experimentally observed in 2008

nature

Vol 452|24 April 2008|doi:10.1038/nature06843

LETTERS

A topological Dirac insulator in a quantum spin Hall phase

D. Hsieh¹, D. Qian¹, L. Wray¹, Y. Xia¹, Y. S. Hor², R. J. Cava² & M. Z. Hasan^{1,3}

Optical tweezers

Material o Model and Results

Applications

Conclusions and Prospects

Topological insulators properties

- Strong spin-orbit coupling
- Gapped bulk band structure; metallic surface states protected by time reversal symmetry
- Spin-momentum locking
- Dissipationless propagation of electrons

Chen, Y. L., et al. *Science* **329**.5992, (2010): 659. Hasan, M. Z. and Kane, C. L. *Rev. Mod. Phys.* **82**, (2010): 3045. Qi, X.-L. and Zhang, S.-C. *Rev. Mod. Phys.* **83**, (2011): 1057.

Topological Insulators	Optical tweezers	Material o	Model and Results	Applications O	Conclusions and Prospects
Application		ato.			

Application prospects

- Topological quantum computing
- Electronic devices with low dissipation
- Spintronics

Mellnik, A. R. et al. *Nature* **511**, (2014): 449. Jamali, M. et al. *Nano Lett.*, **15**, (2015): 7126. Wang, H. et al. *Phys. Rev. Let.*, **117**, (2016): 076601.

Optical tweezers

Material

Model and Results

Applications

Conclusions and Prospects

Optical tweezers technique

• $\lambda \sim$ 1064 nm ytterbium-doped fiber laser

• Laser power \sim 25 mW

Warlley H. Campos

Optical tweezers technique

Ray optics regime (*radius* $>> \lambda$)

• Highly focused Gaussian light beam:

 $I = I_0 e^{-Ar^2}$

Conservation of linear momentum

• Snell law: $n_p \sin \theta_p = n_{med} \sin \theta_{med}$

 $n_{particle} > n_{medium}$

• Refraction in the bulk leads to gradient force:

$$\vec{F}_g \sim \vec{\nabla} I$$

Rocha, M. S. Am. J. Phys. 77, (2009): 704.

• Absorption and reflection leads to radiation pressure:

$$F_{rp} \sim I$$

- Radiation pressure deflects the particle from the focus
- There is also a viscous (Stokes) force exerted by the surrounding medium:

$$ec{F}_{s}\sim-ec{v}$$

Dielectric particle \rightarrow gradient force dominates \rightarrow stable trap

Metallic particle \rightarrow radiation pressure dominates \rightarrow deflection

Rocha, M. S. Am. J. Phys. 77, (2009): 704.

Warlley H. Campos

Topological Insulators Optical tweezers ooo Material Model and Results Applications Conclusions and Prospects ooo oo

Some applications of optical tweezers

Membrane elastic properties

DNA studies

Micro-rheology

Pontes, B. et al. *PLoS One* **8**.7, (2013): e67708. Murugesapillai, D. et al. *Biophys. Rev.* **9**, (2016): 17. Ayala, Y. A. et al. *BMC biophysics* **9**.1, (2016): 5. Alemany, A. et al. *Biophys. J.* **110**.1, (2016): 63. Naufer, M. et al. *Protein Science*, (2017): Early View.
 Topological Insulators
 Optical tweezers
 Material
 Model and Results
 Applications
 Conclusions and Prospects

 000
 0
 0000
 0
 00
 00
 00

Topological insulator bead in optical tweezers

 Topological Insulators
 Optical tweezers
 Material
 Model and Results
 Applications
 O

 000
 00000
 ●
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td

Conclusions and Prospects

Syntesis of TI-particles

• ARPES measurements for Bi₂Te₃:

• Laser ablation technique in liquid solution:

Michiardi, M. et al. *Phys. Rev. B* **90** (2014): 075105

Amendola, V. and Meneghetti, M Phys. Chem. Chem. Phys. 15 (2013): 3027.

Topological Insulators Optical tweezers oco

Oscillatory motion

- Particles diameter between \sim 3 μ m and 7 μ m
- Oscillation parallel to the focal plane

For a particle with diameter \sim 4.2 μ m:

- Amplitudes vary between $\sim 7\mu m {-} 9\mu m$
- Closest approximation \sim 3.2 μ m
- Well-defined period: $T = (3.52 \pm 0.32)$ s

Topological Insulators	Optical tweezers	Material	Model and Results	Applications	Conclusions and Prospects
			0000		

Theoretical model

Topological Insulators	Optical tweezers	Material o	Model and Results	Applications O	Conclusions and Prospects
Optical for	се				

Physical parameters:

- $\omega(z) = (5.55 \pm 0.15) \mu m$
- $\mathcal{F}_{\textit{rp}} = (4.1 \pm 0.6) \text{pN}$

•
$$\mathcal{F}_g = (2.1 \pm 0.2) \text{pN}$$

•
$$\langle \omega(z) \rangle_{cicles} = (5.7 \pm 0.3) \mu m$$

• $\omega_{0_{exp}} = (0.45 \pm 0.02) \mu m$
• $\omega_{0_{ored}} = \frac{2\lambda}{\pi NA} \sim 0.36 \mu m$

Topological Insulators Optical tweezers Material

Model and Results

Applications

Conclusions and Prospects

Averages: Dependence with diameter

In the range analysed (diameter \sim 3.5 - 6.5 $\mu m)$:

- Optical forces increase with the particle size
- Frequency increases with particle size

•
$$F_g \sim Aa^3$$
 $F_{rp} \sim Ba^2$

$$F_S \sim Ca$$

Harmonic description:

•
$$T = 2\pi \sqrt{\frac{m}{k}} \sim \sqrt{\frac{a^3}{Aa^3 + Ba^2 + Ca}}$$

•
$$A \sim 1.81 \text{s}^{-2}$$
 $B \sim 3.89 \mu \text{ms}^{-2}$
 $C \sim -46.50 \mu \text{m}^2 \text{s}^{-2}$

Some potential applications

Dynamic force measurements

Wang, M.D. et al. Biophys. Journal 72, (1997): 1335-1346

Microrheology

Preece, D. et. al. J. Opt. 13, (2011): 044022

- Microsized TI Bi₂Te₃ particles oscillate perpendicularly to the optical axis when subject to a highly focused light beam
- Frequency remains practically constant during a number of cycles
- For practical purposes, frequency can be controlled by changing the power of the light beam and diameter of the particles
- Regular spherical shape is crucial for highly precise applications
- Other TI composites may have more intense manifestation of these properties
- Functionalize the TI particles
- Work available in arXiv:1703.04556

Topological Insulators	Optical tweezers	Material o	Model and Results	Applications o	Conclusions and Prospects ○●
Acknowled	Igements				

Thank you!

